Enter a problem...
Calculus Examples
Step 1
Step 1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Differentiate using the Product Rule which states that is where and .
Step 1.3
Differentiate using the Exponential Rule which states that is where =.
Step 1.4
Differentiate using the Power Rule which states that is where .
Step 1.5
Simplify.
Step 1.5.1
Apply the distributive property.
Step 1.5.2
Multiply by .
Step 1.5.3
Reorder terms.
Step 1.5.4
Reorder factors in .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Product Rule which states that is where and .
Step 2.2.3
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Product Rule which states that is where and .
Step 2.3.3
Differentiate using the Exponential Rule which states that is where =.
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.4
Simplify.
Step 2.4.1
Apply the distributive property.
Step 2.4.2
Apply the distributive property.
Step 2.4.3
Combine terms.
Step 2.4.3.1
Multiply by .
Step 2.4.3.2
Multiply by .
Step 2.4.3.3
Add and .
Step 2.4.3.3.1
Move .
Step 2.4.3.3.2
Add and .
Step 2.4.4
Reorder terms.
Step 2.4.5
Reorder factors in .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Product Rule which states that is where and .
Step 3.2.3
Differentiate using the Exponential Rule which states that is where =.
Step 3.2.4
Differentiate using the Power Rule which states that is where .
Step 3.3
Evaluate .
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Product Rule which states that is where and .
Step 3.3.3
Differentiate using the Exponential Rule which states that is where =.
Step 3.3.4
Differentiate using the Power Rule which states that is where .
Step 3.4
Evaluate .
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Differentiate using the Product Rule which states that is where and .
Step 3.4.3
Differentiate using the Exponential Rule which states that is where =.
Step 3.4.4
Differentiate using the Power Rule which states that is where .
Step 3.4.5
Multiply by .
Step 3.5
Simplify.
Step 3.5.1
Apply the distributive property.
Step 3.5.2
Apply the distributive property.
Step 3.5.3
Apply the distributive property.
Step 3.5.4
Combine terms.
Step 3.5.4.1
Multiply by .
Step 3.5.4.2
Multiply by .
Step 3.5.4.3
Add and .
Step 3.5.4.3.1
Move .
Step 3.5.4.3.2
Add and .
Step 3.5.4.4
Add and .
Step 3.5.4.4.1
Move .
Step 3.5.4.4.2
Add and .
Step 3.5.5
Reorder terms.
Step 3.5.6
Reorder factors in .