Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Differentiate both sides of the equation.
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Differentiate.
Step 1.2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2
Evaluate .
Step 1.2.2.1
Differentiate using the chain rule, which states that is where and .
Step 1.2.2.1.1
To apply the Chain Rule, set as .
Step 1.2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2.1.3
Replace all occurrences of with .
Step 1.2.2.2
Rewrite as .
Step 1.2.3
Reorder terms.
Step 1.3
Differentiate the right side of the equation.
Step 1.3.1
Differentiate using the chain rule, which states that is where and .
Step 1.3.1.1
To apply the Chain Rule, set as .
Step 1.3.1.2
Differentiate using the Power Rule which states that is where .
Step 1.3.1.3
Replace all occurrences of with .
Step 1.3.2
Differentiate.
Step 1.3.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.3.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2.3
Differentiate using the Power Rule which states that is where .
Step 1.3.2.4
Multiply by .
Step 1.3.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3
Differentiate using the chain rule, which states that is where and .
Step 1.3.3.1
To apply the Chain Rule, set as .
Step 1.3.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3.3
Replace all occurrences of with .
Step 1.3.4
Multiply by .
Step 1.3.5
Rewrite as .
Step 1.3.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.7
Differentiate using the Power Rule which states that is where .
Step 1.3.8
Multiply by .
Step 1.3.9
Simplify.
Step 1.3.9.1
Apply the distributive property.
Step 1.3.9.2
Combine terms.
Step 1.3.9.2.1
Multiply by .
Step 1.3.9.2.2
Multiply by .
Step 1.3.9.2.3
Multiply by .
Step 1.3.9.3
Reorder the factors of .
Step 1.4
Reform the equation by setting the left side equal to the right side.
Step 1.5
Solve for .
Step 1.5.1
Simplify .
Step 1.5.1.1
Rewrite.
Step 1.5.1.2
Simplify by adding zeros.
Step 1.5.1.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.5.1.4
Simplify terms.
Step 1.5.1.4.1
Simplify each term.
Step 1.5.1.4.1.1
Rewrite using the commutative property of multiplication.
Step 1.5.1.4.1.2
Multiply by by adding the exponents.
Step 1.5.1.4.1.2.1
Move .
Step 1.5.1.4.1.2.2
Multiply by .
Step 1.5.1.4.1.2.2.1
Raise to the power of .
Step 1.5.1.4.1.2.2.2
Use the power rule to combine exponents.
Step 1.5.1.4.1.2.3
Add and .
Step 1.5.1.4.1.3
Multiply by .
Step 1.5.1.4.1.4
Rewrite using the commutative property of multiplication.
Step 1.5.1.4.1.5
Multiply by .
Step 1.5.1.4.1.6
Rewrite using the commutative property of multiplication.
Step 1.5.1.4.1.7
Multiply by by adding the exponents.
Step 1.5.1.4.1.7.1
Move .
Step 1.5.1.4.1.7.2
Multiply by .
Step 1.5.1.4.1.8
Multiply by .
Step 1.5.1.4.1.9
Multiply by .
Step 1.5.1.4.1.10
Multiply by by adding the exponents.
Step 1.5.1.4.1.10.1
Move .
Step 1.5.1.4.1.10.2
Multiply by .
Step 1.5.1.4.1.10.2.1
Raise to the power of .
Step 1.5.1.4.1.10.2.2
Use the power rule to combine exponents.
Step 1.5.1.4.1.10.3
Add and .
Step 1.5.1.4.1.11
Multiply by .
Step 1.5.1.4.1.12
Multiply by .
Step 1.5.1.4.1.13
Multiply by .
Step 1.5.1.4.1.14
Multiply by .
Step 1.5.1.4.1.15
Multiply by .
Step 1.5.1.4.2
Subtract from .
Step 1.5.2
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 1.5.3
Subtract from both sides of the equation.
Step 1.5.4
Move all terms not containing to the right side of the equation.
Step 1.5.4.1
Subtract from both sides of the equation.
Step 1.5.4.2
Subtract from both sides of the equation.
Step 1.5.4.3
Add to both sides of the equation.
Step 1.5.4.4
Add to both sides of the equation.
Step 1.5.4.5
Subtract from both sides of the equation.
Step 1.5.4.6
Combine the opposite terms in .
Step 1.5.4.6.1
Subtract from .
Step 1.5.4.6.2
Add and .
Step 1.5.5
Factor out of .
Step 1.5.5.1
Factor out of .
Step 1.5.5.2
Factor out of .
Step 1.5.5.3
Factor out of .
Step 1.5.5.4
Factor out of .
Step 1.5.5.5
Factor out of .
Step 1.5.5.6
Factor out of .
Step 1.5.5.7
Factor out of .
Step 1.5.6
Divide each term in by and simplify.
Step 1.5.6.1
Divide each term in by .
Step 1.5.6.2
Simplify the left side.
Step 1.5.6.2.1
Cancel the common factor of .
Step 1.5.6.2.1.1
Cancel the common factor.
Step 1.5.6.2.1.2
Rewrite the expression.
Step 1.5.6.2.2
Cancel the common factor of .
Step 1.5.6.2.2.1
Cancel the common factor.
Step 1.5.6.2.2.2
Rewrite the expression.
Step 1.5.6.2.3
Cancel the common factor of .
Step 1.5.6.2.3.1
Cancel the common factor.
Step 1.5.6.2.3.2
Divide by .
Step 1.5.6.3
Simplify the right side.
Step 1.5.6.3.1
Simplify each term.
Step 1.5.6.3.1.1
Cancel the common factor of and .
Step 1.5.6.3.1.1.1
Factor out of .
Step 1.5.6.3.1.1.2
Cancel the common factors.
Step 1.5.6.3.1.1.2.1
Factor out of .
Step 1.5.6.3.1.1.2.2
Cancel the common factor.
Step 1.5.6.3.1.1.2.3
Rewrite the expression.
Step 1.5.6.3.1.2
Move the negative in front of the fraction.
Step 1.5.6.3.1.3
Cancel the common factor of and .
Step 1.5.6.3.1.3.1
Factor out of .
Step 1.5.6.3.1.3.2
Cancel the common factors.
Step 1.5.6.3.1.3.2.1
Factor out of .
Step 1.5.6.3.1.3.2.2
Cancel the common factor.
Step 1.5.6.3.1.3.2.3
Rewrite the expression.
Step 1.5.6.3.1.4
Cancel the common factor of and .
Step 1.5.6.3.1.4.1
Factor out of .
Step 1.5.6.3.1.4.2
Cancel the common factors.
Step 1.5.6.3.1.4.2.1
Cancel the common factor.
Step 1.5.6.3.1.4.2.2
Rewrite the expression.
Step 1.5.6.3.1.5
Move the negative in front of the fraction.
Step 1.5.6.3.1.6
Cancel the common factor of and .
Step 1.5.6.3.1.6.1
Factor out of .
Step 1.5.6.3.1.6.2
Cancel the common factors.
Step 1.5.6.3.1.6.2.1
Factor out of .
Step 1.5.6.3.1.6.2.2
Cancel the common factor.
Step 1.5.6.3.1.6.2.3
Rewrite the expression.
Step 1.5.6.3.1.7
Cancel the common factor of and .
Step 1.5.6.3.1.7.1
Factor out of .
Step 1.5.6.3.1.7.2
Cancel the common factors.
Step 1.5.6.3.1.7.2.1
Factor out of .
Step 1.5.6.3.1.7.2.2
Cancel the common factor.
Step 1.5.6.3.1.7.2.3
Rewrite the expression.
Step 1.5.6.3.1.8
Cancel the common factor of and .
Step 1.5.6.3.1.8.1
Factor out of .
Step 1.5.6.3.1.8.2
Cancel the common factors.
Step 1.5.6.3.1.8.2.1
Cancel the common factor.
Step 1.5.6.3.1.8.2.2
Rewrite the expression.
Step 1.5.6.3.2
To write as a fraction with a common denominator, multiply by .
Step 1.5.6.3.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 1.5.6.3.3.1
Multiply by .
Step 1.5.6.3.3.2
Reorder the factors of .
Step 1.5.6.3.4
Combine the numerators over the common denominator.
Step 1.5.6.3.5
Simplify the numerator.
Step 1.5.6.3.5.1
Factor out of .
Step 1.5.6.3.5.1.1
Factor out of .
Step 1.5.6.3.5.1.2
Factor out of .
Step 1.5.6.3.5.1.3
Factor out of .
Step 1.5.6.3.5.2
Combine exponents.
Step 1.5.6.3.5.2.1
Raise to the power of .
Step 1.5.6.3.5.2.2
Raise to the power of .
Step 1.5.6.3.5.2.3
Use the power rule to combine exponents.
Step 1.5.6.3.5.2.4
Add and .
Step 1.5.6.3.6
Combine the numerators over the common denominator.
Step 1.5.6.3.7
Simplify the numerator.
Step 1.5.6.3.7.1
Factor out of .
Step 1.5.6.3.7.1.1
Factor out of .
Step 1.5.6.3.7.1.2
Factor out of .
Step 1.5.6.3.7.1.3
Factor out of .
Step 1.5.6.3.7.2
Apply the distributive property.
Step 1.5.6.3.7.3
Multiply by .
Step 1.5.6.3.7.4
Multiply by .
Step 1.5.6.3.8
To write as a fraction with a common denominator, multiply by .
Step 1.5.6.3.9
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 1.5.6.3.9.1
Multiply by .
Step 1.5.6.3.9.2
Reorder the factors of .
Step 1.5.6.3.10
Combine the numerators over the common denominator.
Step 1.5.6.3.11
Simplify the numerator.
Step 1.5.6.3.11.1
Factor out of .
Step 1.5.6.3.11.1.1
Factor out of .
Step 1.5.6.3.11.1.2
Factor out of .
Step 1.5.6.3.11.1.3
Factor out of .
Step 1.5.6.3.11.2
Apply the distributive property.
Step 1.5.6.3.11.3
Simplify.
Step 1.5.6.3.11.3.1
Rewrite using the commutative property of multiplication.
Step 1.5.6.3.11.3.2
Rewrite using the commutative property of multiplication.
Step 1.5.6.3.11.3.3
Rewrite using the commutative property of multiplication.
Step 1.5.6.3.11.4
Simplify each term.
Step 1.5.6.3.11.4.1
Multiply by by adding the exponents.
Step 1.5.6.3.11.4.1.1
Move .
Step 1.5.6.3.11.4.1.2
Multiply by .
Step 1.5.6.3.11.4.1.2.1
Raise to the power of .
Step 1.5.6.3.11.4.1.2.2
Use the power rule to combine exponents.
Step 1.5.6.3.11.4.1.3
Add and .
Step 1.5.6.3.11.4.2
Multiply by by adding the exponents.
Step 1.5.6.3.11.4.2.1
Move .
Step 1.5.6.3.11.4.2.2
Multiply by .
Step 1.5.6.3.11.5
Multiply by by adding the exponents.
Step 1.5.6.3.11.5.1
Move .
Step 1.5.6.3.11.5.2
Multiply by .
Step 1.5.6.3.12
Simplify with factoring out.
Step 1.5.6.3.12.1
Factor out of .
Step 1.5.6.3.12.2
Factor out of .
Step 1.5.6.3.12.3
Factor out of .
Step 1.5.6.3.12.4
Factor out of .
Step 1.5.6.3.12.5
Factor out of .
Step 1.5.6.3.12.6
Factor out of .
Step 1.5.6.3.12.7
Factor out of .
Step 1.5.6.3.12.8
Simplify the expression.
Step 1.5.6.3.12.8.1
Rewrite as .
Step 1.5.6.3.12.8.2
Move the negative in front of the fraction.
Step 1.6
Replace with .
Step 1.7
Evaluate at and .
Step 1.7.1
Replace the variable with in the expression.
Step 1.7.2
Replace the variable with in the expression.
Step 1.7.3
Simplify the numerator.
Step 1.7.3.1
Raising to any positive power yields .
Step 1.7.3.2
Multiply by .
Step 1.7.3.3
Multiply by .
Step 1.7.3.4
Raise to the power of .
Step 1.7.3.5
Multiply by .
Step 1.7.3.6
Raising to any positive power yields .
Step 1.7.3.7
Multiply by .
Step 1.7.3.8
Raise to the power of .
Step 1.7.3.9
Multiply by .
Step 1.7.3.10
Add and .
Step 1.7.3.11
Add and .
Step 1.7.3.12
Subtract from .
Step 1.7.4
Simplify by multiplying terms.
Step 1.7.4.1
Multiply by .
Step 1.7.4.2
Simplify the expression.
Step 1.7.4.2.1
Multiply by .
Step 1.7.4.2.2
Divide by .
Step 1.7.4.2.3
Multiply by .
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Simplify .
Step 2.3.1.1
Multiply by .
Step 2.3.1.2
Add and .
Step 2.3.2
Add to both sides of the equation.
Step 3