Enter a problem...
Calculus Examples
Step 1
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
Evaluate the limit of the numerator.
Step 1.2.1
Evaluate the limit.
Step 1.2.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.2.1.2
Evaluate the limit of which is constant as approaches .
Step 1.2.1.3
Move the limit inside the trig function because cosine is continuous.
Step 1.2.2
Evaluate the limit of by plugging in for .
Step 1.2.3
Simplify the answer.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
The exact value of is .
Step 1.2.3.1.2
Multiply by .
Step 1.2.3.2
Subtract from .
Step 1.3
Evaluate the limit of the denominator.
Step 1.3.1
Evaluate the limit.
Step 1.3.1.1
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.3.1.2
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.3.1.3
Evaluate the limit of which is constant as approaches .
Step 1.3.1.4
Move the limit into the exponent.
Step 1.3.2
Evaluate the limit of by plugging in for .
Step 1.3.3
Simplify the answer.
Step 1.3.3.1
Simplify each term.
Step 1.3.3.1.1
Anything raised to is .
Step 1.3.3.1.2
Multiply by .
Step 1.3.3.2
Subtract from .
Step 1.3.3.3
Raising to any positive power yields .
Step 1.3.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Evaluate .
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
The derivative of with respect to is .
Step 3.4.3
Multiply by .
Step 3.4.4
Multiply by .
Step 3.5
Add and .
Step 3.6
Differentiate using the chain rule, which states that is where and .
Step 3.6.1
To apply the Chain Rule, set as .
Step 3.6.2
Differentiate using the Power Rule which states that is where .
Step 3.6.3
Replace all occurrences of with .
Step 3.7
By the Sum Rule, the derivative of with respect to is .
Step 3.8
Since is constant with respect to , the derivative of with respect to is .
Step 3.9
Add and .
Step 3.10
Since is constant with respect to , the derivative of with respect to is .
Step 3.11
Multiply by .
Step 3.12
Differentiate using the Exponential Rule which states that is where =.
Step 3.13
Simplify.
Step 3.13.1
Apply the distributive property.
Step 3.13.2
Apply the distributive property.
Step 3.13.3
Combine terms.
Step 3.13.3.1
Multiply by .
Step 3.13.3.2
Multiply by .
Step 3.13.3.3
Multiply by by adding the exponents.
Step 3.13.3.3.1
Move .
Step 3.13.3.3.2
Use the power rule to combine exponents.
Step 3.13.3.3.3
Add and .
Step 3.13.4
Reorder terms.
Step 4
Step 4.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 4.1.1
Take the limit of the numerator and the limit of the denominator.
Step 4.1.2
Evaluate the limit of the numerator.
Step 4.1.2.1
Move the limit inside the trig function because sine is continuous.
Step 4.1.2.2
Evaluate the limit of by plugging in for .
Step 4.1.2.3
The exact value of is .
Step 4.1.3
Evaluate the limit of the denominator.
Step 4.1.3.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 4.1.3.2
Move the term outside of the limit because it is constant with respect to .
Step 4.1.3.3
Move the limit into the exponent.
Step 4.1.3.4
Move the term outside of the limit because it is constant with respect to .
Step 4.1.3.5
Move the term outside of the limit because it is constant with respect to .
Step 4.1.3.6
Move the limit into the exponent.
Step 4.1.3.7
Evaluate the limits by plugging in for all occurrences of .
Step 4.1.3.7.1
Evaluate the limit of by plugging in for .
Step 4.1.3.7.2
Evaluate the limit of by plugging in for .
Step 4.1.3.8
Simplify the answer.
Step 4.1.3.8.1
Simplify each term.
Step 4.1.3.8.1.1
Multiply by .
Step 4.1.3.8.1.2
Anything raised to is .
Step 4.1.3.8.1.3
Multiply by .
Step 4.1.3.8.1.4
Anything raised to is .
Step 4.1.3.8.1.5
Multiply by .
Step 4.1.3.8.2
Subtract from .
Step 4.1.3.8.3
The expression contains a division by . The expression is undefined.
Undefined
Step 4.1.3.9
The expression contains a division by . The expression is undefined.
Undefined
Step 4.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 4.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 4.3
Find the derivative of the numerator and denominator.
Step 4.3.1
Differentiate the numerator and denominator.
Step 4.3.2
The derivative of with respect to is .
Step 4.3.3
By the Sum Rule, the derivative of with respect to is .
Step 4.3.4
Evaluate .
Step 4.3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.4.2
Differentiate using the chain rule, which states that is where and .
Step 4.3.4.2.1
To apply the Chain Rule, set as .
Step 4.3.4.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.3.4.2.3
Replace all occurrences of with .
Step 4.3.4.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.4.4
Differentiate using the Power Rule which states that is where .
Step 4.3.4.5
Multiply by .
Step 4.3.4.6
Move to the left of .
Step 4.3.4.7
Multiply by .
Step 4.3.5
Evaluate .
Step 4.3.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.5.2
Differentiate using the Exponential Rule which states that is where =.
Step 5
Step 5.1
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 5.2
Move the limit inside the trig function because cosine is continuous.
Step 5.3
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 5.4
Move the term outside of the limit because it is constant with respect to .
Step 5.5
Move the limit into the exponent.
Step 5.6
Move the term outside of the limit because it is constant with respect to .
Step 5.7
Move the term outside of the limit because it is constant with respect to .
Step 5.8
Move the limit into the exponent.
Step 6
Step 6.1
Evaluate the limit of by plugging in for .
Step 6.2
Evaluate the limit of by plugging in for .
Step 6.3
Evaluate the limit of by plugging in for .
Step 7
Step 7.1
The exact value of is .
Step 7.2
Simplify the denominator.
Step 7.2.1
Multiply by .
Step 7.2.2
Anything raised to is .
Step 7.2.3
Multiply by .
Step 7.2.4
Anything raised to is .
Step 7.2.5
Multiply by .
Step 7.2.6
Subtract from .