Calculus Examples

Find the Antiderivative 3e^(3x)sin(e^(3x))
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 5.1
Let . Find .
Tap for more steps...
Step 5.1.1
Differentiate .
Step 5.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.3
Differentiate using the Power Rule which states that is where .
Step 5.1.4
Multiply by .
Step 5.2
Rewrite the problem using and .
Step 6
Simplify.
Tap for more steps...
Step 6.1
Combine and .
Step 6.2
Combine and .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Simplify.
Tap for more steps...
Step 8.1
Combine and .
Step 8.2
Cancel the common factor of .
Tap for more steps...
Step 8.2.1
Cancel the common factor.
Step 8.2.2
Rewrite the expression.
Step 8.3
Multiply by .
Step 9
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 9.1
Let . Find .
Tap for more steps...
Step 9.1.1
Differentiate .
Step 9.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 9.2
Rewrite the problem using and .
Step 10
The integral of with respect to is .
Step 11
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 11.1
Replace all occurrences of with .
Step 11.2
Replace all occurrences of with .
Step 12
The answer is the antiderivative of the function .