Calculus Examples

Find the Second Derivative y=8xcos(x^2)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Differentiate using the Product Rule which states that is where and .
Step 1.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.1
To apply the Chain Rule, set as .
Step 1.3.2
The derivative of with respect to is .
Step 1.3.3
Replace all occurrences of with .
Step 1.4
Differentiate using the Power Rule.
Tap for more steps...
Step 1.4.1
Differentiate using the Power Rule which states that is where .
Step 1.4.2
Multiply by .
Step 1.5
Raise to the power of .
Step 1.6
Raise to the power of .
Step 1.7
Use the power rule to combine exponents.
Step 1.8
Add and .
Step 1.9
Differentiate using the Power Rule which states that is where .
Step 1.10
Multiply by .
Step 1.11
Simplify.
Tap for more steps...
Step 1.11.1
Apply the distributive property.
Step 1.11.2
Multiply by .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Product Rule which states that is where and .
Step 2.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.3.1
To apply the Chain Rule, set as .
Step 2.2.3.2
The derivative of with respect to is .
Step 2.2.3.3
Replace all occurrences of with .
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Multiply by by adding the exponents.
Tap for more steps...
Step 2.2.6.1
Move .
Step 2.2.6.2
Multiply by .
Tap for more steps...
Step 2.2.6.2.1
Raise to the power of .
Step 2.2.6.2.2
Use the power rule to combine exponents.
Step 2.2.6.3
Add and .
Step 2.2.7
Move to the left of .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.2.1
To apply the Chain Rule, set as .
Step 2.3.2.2
The derivative of with respect to is .
Step 2.3.2.3
Replace all occurrences of with .
Step 2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.3.4
Multiply by .
Step 2.3.5
Multiply by .
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Apply the distributive property.
Step 2.4.2
Combine terms.
Tap for more steps...
Step 2.4.2.1
Multiply by .
Step 2.4.2.2
Multiply by .
Step 2.4.2.3
Subtract from .
Step 2.4.3
Reorder terms.