Enter a problem...
Calculus Examples
;
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate using the Product Rule which states that is where and .
Step 1.1.1.2
Differentiate.
Step 1.1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.3
Add and .
Step 1.1.1.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.5
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.6
Simplify the expression.
Step 1.1.1.2.6.1
Multiply by .
Step 1.1.1.2.6.2
Move to the left of .
Step 1.1.1.2.6.3
Rewrite as .
Step 1.1.1.2.7
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.8
Simplify by adding terms.
Step 1.1.1.2.8.1
Multiply by .
Step 1.1.1.2.8.2
Subtract from .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Subtract from both sides of the equation.
Step 1.2.3
Divide each term in by and simplify.
Step 1.2.3.1
Divide each term in by .
Step 1.2.3.2
Simplify the left side.
Step 1.2.3.2.1
Cancel the common factor of .
Step 1.2.3.2.1.1
Cancel the common factor.
Step 1.2.3.2.1.2
Divide by .
Step 1.2.3.3
Simplify the right side.
Step 1.2.3.3.1
Divide by .
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Step 1.4.1
Evaluate at .
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Multiply by .
Step 1.4.1.2.2
Subtract from .
Step 1.4.1.2.3
Multiply by .
Step 1.4.2
List all of the points.
Step 2
Step 2.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 2.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 2.2.1
Replace the variable with in the expression.
Step 2.2.2
Simplify the result.
Step 2.2.2.1
Multiply by .
Step 2.2.2.2
Add and .
Step 2.2.2.3
The final answer is .
Step 2.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 2.3.1
Replace the variable with in the expression.
Step 2.3.2
Simplify the result.
Step 2.3.2.1
Multiply by .
Step 2.3.2.2
Add and .
Step 2.3.2.3
The final answer is .
Step 2.4
Since the first derivative changed signs from positive to negative around , then is a local maximum.
is a local maximum
is a local maximum
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
No absolute minimum
Step 4