Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.2.5
Multiply by .
Step 2
Step 2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2
Differentiate.
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4
Multiply by .
Step 2.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.6
Add and .
Step 2.3
Differentiate using the chain rule, which states that is where and .
Step 2.3.1
To apply the Chain Rule, set as .
Step 2.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Differentiate.
Step 2.4.1
By the Sum Rule, the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.4
Differentiate using the Power Rule which states that is where .
Step 2.4.5
Multiply by .
Step 2.5
Raise to the power of .
Step 2.6
Raise to the power of .
Step 2.7
Use the power rule to combine exponents.
Step 2.8
Add and .
Step 2.9
Reorder terms.
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate using the chain rule, which states that is where and .
Step 4.1.1.1
To apply the Chain Rule, set as .
Step 4.1.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.1.1.3
Replace all occurrences of with .
Step 4.1.2
Differentiate.
Step 4.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.4
Differentiate using the Power Rule which states that is where .
Step 4.1.2.5
Multiply by .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5.3
Set equal to and solve for .
Step 5.3.1
Set equal to .
Step 5.3.2
Solve for .
Step 5.3.2.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 5.3.2.2
The equation cannot be solved because is undefined.
Undefined
Step 5.3.2.3
There is no solution for
No solution
No solution
No solution
Step 5.4
Set equal to and solve for .
Step 5.4.1
Set equal to .
Step 5.4.2
Solve for .
Step 5.4.2.1
Add to both sides of the equation.
Step 5.4.2.2
Divide each term in by and simplify.
Step 5.4.2.2.1
Divide each term in by .
Step 5.4.2.2.2
Simplify the left side.
Step 5.4.2.2.2.1
Cancel the common factor of .
Step 5.4.2.2.2.1.1
Cancel the common factor.
Step 5.4.2.2.2.1.2
Divide by .
Step 5.4.2.2.3
Simplify the right side.
Step 5.4.2.2.3.1
Divide by .
Step 5.4.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.4.2.4
Any root of is .
Step 5.4.2.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.4.2.5.1
First, use the positive value of the to find the first solution.
Step 5.4.2.5.2
Next, use the negative value of the to find the second solution.
Step 5.4.2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.5
The final solution is all the values that make true.
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Simplify each term.
Step 9.1.1.1
One to any power is one.
Step 9.1.1.2
Multiply by .
Step 9.1.2
Subtract from .
Step 9.1.3
Rewrite the expression using the negative exponent rule .
Step 9.1.4
Combine and .
Step 9.1.5
Multiply by .
Step 9.1.6
Simplify each term.
Step 9.1.6.1
One to any power is one.
Step 9.1.6.2
Multiply by .
Step 9.1.7
Subtract from .
Step 9.1.8
Rewrite the expression using the negative exponent rule .
Step 9.1.9
Simplify each term.
Step 9.1.9.1
One to any power is one.
Step 9.1.9.2
Multiply by .
Step 9.1.10
Subtract from .
Step 9.1.11
Raising to any positive power yields .
Step 9.1.12
Multiply by .
Step 9.2
Add and .
Step 10
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Simplify each term.
Step 11.2.1.1
One to any power is one.
Step 11.2.1.2
Multiply by .
Step 11.2.2
Subtract from .
Step 11.2.3
Rewrite the expression using the negative exponent rule .
Step 11.2.4
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Step 13.1
Simplify each term.
Step 13.1.1
Simplify each term.
Step 13.1.1.1
Raise to the power of .
Step 13.1.1.2
Multiply by .
Step 13.1.2
Add and .
Step 13.1.3
Multiply by .
Step 13.1.4
Simplify each term.
Step 13.1.4.1
Raise to the power of .
Step 13.1.4.2
Multiply by .
Step 13.1.5
Add and .
Step 13.1.6
Simplify each term.
Step 13.1.6.1
Raise to the power of .
Step 13.1.6.2
Multiply by .
Step 13.1.7
Subtract from .
Step 13.1.8
Raising to any positive power yields .
Step 13.1.9
Multiply by .
Step 13.2
Add and .
Step 14
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 15
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Step 15.2.1
Simplify each term.
Step 15.2.1.1
Raise to the power of .
Step 15.2.1.2
Multiply by .
Step 15.2.2
Add and .
Step 15.2.3
The final answer is .
Step 16
These are the local extrema for .
is a local minima
is a local maxima
Step 17