Calculus Examples

Evaluate Using L'Hospital's Rule limit as x approaches infinity of (8-3x)/(9x^2+11)
Step 1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.2.1
Reorder and .
Step 1.2.2
The limit at infinity of a polynomial whose leading coefficient is negative is negative infinity.
Step 1.3
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.
Step 1.4
Infinity divided by infinity is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Evaluate .
Tap for more steps...
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Differentiate using the Power Rule which states that is where .
Step 3.4.3
Multiply by .
Step 3.5
Subtract from .
Step 3.6
By the Sum Rule, the derivative of with respect to is .
Step 3.7
Evaluate .
Tap for more steps...
Step 3.7.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.7.2
Differentiate using the Power Rule which states that is where .
Step 3.7.3
Multiply by .
Step 3.8
Since is constant with respect to , the derivative of with respect to is .
Step 3.9
Add and .
Step 4
Evaluate the limit.
Tap for more steps...
Step 4.1
Cancel the common factor of and .
Tap for more steps...
Step 4.1.1
Factor out of .
Step 4.1.2
Cancel the common factors.
Tap for more steps...
Step 4.1.2.1
Factor out of .
Step 4.1.2.2
Cancel the common factor.
Step 4.1.2.3
Rewrite the expression.
Step 4.2
Move the term outside of the limit because it is constant with respect to .
Step 5
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 6
Multiply by .