Enter a problem...
Calculus Examples
Step 1
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
As log approaches infinity, the value goes to .
Step 1.3
Since the exponent approaches , the quantity approaches .
Step 1.4
Infinity divided by infinity is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
Differentiate using the chain rule, which states that is where and .
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
The derivative of with respect to is .
Step 3.2.3
Replace all occurrences of with .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Combine and .
Step 3.5
Cancel the common factor of .
Step 3.5.1
Cancel the common factor.
Step 3.5.2
Rewrite the expression.
Step 3.6
Differentiate using the Power Rule which states that is where .
Step 3.7
Multiply by .
Step 3.8
Differentiate using the chain rule, which states that is where and .
Step 3.8.1
To apply the Chain Rule, set as .
Step 3.8.2
Differentiate using the Exponential Rule which states that is where =.
Step 3.8.3
Replace all occurrences of with .
Step 3.9
Since is constant with respect to , the derivative of with respect to is .
Step 3.10
Differentiate using the Power Rule which states that is where .
Step 3.11
Multiply by .
Step 3.12
Move to the left of .
Step 3.13
Multiply by .
Step 4
Multiply the numerator by the reciprocal of the denominator.
Step 5
Step 5.1
Multiply by .
Step 5.2
Move the term outside of the limit because it is constant with respect to .
Step 6
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 7
Multiply by .