Calculus Examples

Find Where Increasing/Decreasing Using Derivatives (x^2)/((x-2)^3)
Step 1
Write as a function.
Step 2
Find the first derivative.
Tap for more steps...
Step 2.1
Find the first derivative.
Tap for more steps...
Step 2.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 2.1.2
Differentiate using the Power Rule.
Tap for more steps...
Step 2.1.2.1
Multiply the exponents in .
Tap for more steps...
Step 2.1.2.1.1
Apply the power rule and multiply exponents, .
Step 2.1.2.1.2
Multiply by .
Step 2.1.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.3
Move to the left of .
Step 2.1.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1.3.1
To apply the Chain Rule, set as .
Step 2.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3.3
Replace all occurrences of with .
Step 2.1.4
Differentiate.
Tap for more steps...
Step 2.1.4.1
Multiply by .
Step 2.1.4.2
By the Sum Rule, the derivative of with respect to is .
Step 2.1.4.3
Differentiate using the Power Rule which states that is where .
Step 2.1.4.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.4.5
Simplify the expression.
Tap for more steps...
Step 2.1.4.5.1
Add and .
Step 2.1.4.5.2
Multiply by .
Step 2.1.5
Simplify.
Tap for more steps...
Step 2.1.5.1
Simplify the numerator.
Tap for more steps...
Step 2.1.5.1.1
Factor out of .
Tap for more steps...
Step 2.1.5.1.1.1
Factor out of .
Step 2.1.5.1.1.2
Factor out of .
Step 2.1.5.1.1.3
Factor out of .
Step 2.1.5.1.2
Apply the distributive property.
Step 2.1.5.1.3
Multiply by .
Step 2.1.5.1.4
Subtract from .
Step 2.1.5.2
Cancel the common factor of and .
Tap for more steps...
Step 2.1.5.2.1
Factor out of .
Step 2.1.5.2.2
Cancel the common factors.
Tap for more steps...
Step 2.1.5.2.2.1
Factor out of .
Step 2.1.5.2.2.2
Cancel the common factor.
Step 2.1.5.2.2.3
Rewrite the expression.
Step 2.1.5.3
Factor out of .
Step 2.1.5.4
Rewrite as .
Step 2.1.5.5
Factor out of .
Step 2.1.5.6
Rewrite as .
Step 2.1.5.7
Move the negative in front of the fraction.
Step 2.2
The first derivative of with respect to is .
Step 3
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 3.1
Set the first derivative equal to .
Step 3.2
Set the numerator equal to zero.
Step 3.3
Solve the equation for .
Tap for more steps...
Step 3.3.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3.2
Set equal to .
Step 3.3.3
Set equal to and solve for .
Tap for more steps...
Step 3.3.3.1
Set equal to .
Step 3.3.3.2
Subtract from both sides of the equation.
Step 3.3.4
The final solution is all the values that make true.
Step 4
The values which make the derivative equal to are .
Step 5
Find where the derivative is undefined.
Tap for more steps...
Step 5.1
Set the denominator in equal to to find where the expression is undefined.
Step 5.2
Solve for .
Tap for more steps...
Step 5.2.1
Set the equal to .
Step 5.2.2
Add to both sides of the equation.
Step 6
Split into separate intervals around the values that make the derivative or undefined.
Step 7
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Add and .
Step 7.2.2
Simplify the denominator.
Tap for more steps...
Step 7.2.2.1
Subtract from .
Step 7.2.2.2
Raise to the power of .
Step 7.2.3
Multiply by .
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 8.1
Replace the variable with in the expression.
Step 8.2
Simplify the result.
Tap for more steps...
Step 8.2.1
Add and .
Step 8.2.2
Simplify the denominator.
Tap for more steps...
Step 8.2.2.1
Subtract from .
Step 8.2.2.2
Raise to the power of .
Step 8.2.3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 8.2.3.1
Multiply by .
Step 8.2.3.2
Cancel the common factor of and .
Tap for more steps...
Step 8.2.3.2.1
Factor out of .
Step 8.2.3.2.2
Cancel the common factors.
Tap for more steps...
Step 8.2.3.2.2.1
Factor out of .
Step 8.2.3.2.2.2
Cancel the common factor.
Step 8.2.3.2.2.3
Rewrite the expression.
Step 8.2.3.3
Move the negative in front of the fraction.
Step 8.2.4
The final answer is .
Step 8.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 9
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 9.1
Replace the variable with in the expression.
Step 9.2
Simplify the result.
Tap for more steps...
Step 9.2.1
Multiply by .
Step 9.2.2
Simplify the denominator.
Tap for more steps...
Step 9.2.2.1
Subtract from .
Step 9.2.2.2
Raise to the power of .
Step 9.2.3
Simplify the expression.
Tap for more steps...
Step 9.2.3.1
Add and .
Step 9.2.3.2
Divide by .
Step 9.2.3.3
Multiply by .
Step 9.2.4
The final answer is .
Step 9.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 10
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 10.1
Replace the variable with in the expression.
Step 10.2
Simplify the result.
Tap for more steps...
Step 10.2.1
Add and .
Step 10.2.2
Simplify the denominator.
Tap for more steps...
Step 10.2.2.1
Subtract from .
Step 10.2.2.2
One to any power is one.
Step 10.2.3
Simplify the expression.
Tap for more steps...
Step 10.2.3.1
Multiply by .
Step 10.2.3.2
Divide by .
Step 10.2.3.3
Multiply by .
Step 10.2.4
The final answer is .
Step 10.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 11
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 12