Calculus Examples

Find the Derivative - d/d@VAR r(t)=e^(5t)i+e^(5t)cos(t)j+e^(5t)sin(t)k
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Evaluate .
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Differentiate using the Power Rule which states that is where .
Step 2.5
Multiply by .
Step 2.6
Move to the left of .
Step 2.7
Move to the left of .
Step 3
Evaluate .
Tap for more steps...
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the Product Rule which states that is where and .
Step 3.3
The derivative of with respect to is .
Step 3.4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.4.1
To apply the Chain Rule, set as .
Step 3.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 3.4.3
Replace all occurrences of with .
Step 3.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.6
Differentiate using the Power Rule which states that is where .
Step 3.7
Multiply by .
Step 3.8
Move to the left of .
Step 4
Evaluate .
Tap for more steps...
Step 4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2
Differentiate using the Product Rule which states that is where and .
Step 4.3
The derivative of with respect to is .
Step 4.4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.4.1
To apply the Chain Rule, set as .
Step 4.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.4.3
Replace all occurrences of with .
Step 4.5
Since is constant with respect to , the derivative of with respect to is .
Step 4.6
Differentiate using the Power Rule which states that is where .
Step 4.7
Multiply by .
Step 4.8
Move to the left of .
Step 5
Simplify.
Tap for more steps...
Step 5.1
Apply the distributive property.
Step 5.2
Apply the distributive property.
Step 5.3
Remove unnecessary parentheses.
Step 5.4
Reorder terms.
Step 5.5
Reorder factors in .