Enter a problem...
Calculus Examples
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
The derivative of with respect to is .
Step 2.3
Replace all occurrences of with .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Simplify the expression.
Step 3.4.1
Add and .
Step 3.4.2
Multiply by .
Step 3.5
By the Sum Rule, the derivative of with respect to is .
Step 3.6
Differentiate using the Power Rule which states that is where .
Step 3.7
Since is constant with respect to , the derivative of with respect to is .
Step 3.8
Simplify the expression.
Step 3.8.1
Add and .
Step 3.8.2
Multiply by .
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Multiply by .
Step 4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.3
Combine and .
Step 4.1.4
Combine the numerators over the common denominator.
Step 4.1.5
Simplify the numerator.
Step 4.1.5.1
Apply the distributive property.
Step 4.1.5.2
Multiply .
Step 4.1.5.2.1
Multiply by .
Step 4.1.5.2.2
Multiply by .
Step 4.1.6
Reorder factors in .
Step 4.2
Combine terms.
Step 4.2.1
Rewrite as a product.
Step 4.2.2
Multiply by .
Step 4.3
Reorder terms.