Calculus Examples

Find the Local Maxima and Minima f(x)=8x+8cos(8x)
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.2.1
To apply the Chain Rule, set as .
Step 1.3.2.2
The derivative of with respect to is .
Step 1.3.2.3
Replace all occurrences of with .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Multiply by .
Step 1.3.6
Multiply by .
Step 1.3.7
Multiply by .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.2.1
To apply the Chain Rule, set as .
Step 2.2.2.2
The derivative of with respect to is .
Step 2.2.2.3
Replace all occurrences of with .
Step 2.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.2.5
Multiply by .
Step 2.2.6
Move to the left of .
Step 2.2.7
Multiply by .
Step 2.3
Subtract from .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Subtract from both sides of the equation.
Step 5
Divide each term in by and simplify.
Tap for more steps...
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Divide by .
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Cancel the common factor of and .
Tap for more steps...
Step 5.3.1.1
Factor out of .
Step 5.3.1.2
Cancel the common factors.
Tap for more steps...
Step 5.3.1.2.1
Factor out of .
Step 5.3.1.2.2
Cancel the common factor.
Step 5.3.1.2.3
Rewrite the expression.
Step 6
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 7
Simplify the right side.
Tap for more steps...
Step 7.1
Evaluate .
Step 8
Divide each term in by and simplify.
Tap for more steps...
Step 8.1
Divide each term in by .
Step 8.2
Simplify the left side.
Tap for more steps...
Step 8.2.1
Cancel the common factor of .
Tap for more steps...
Step 8.2.1.1
Cancel the common factor.
Step 8.2.1.2
Divide by .
Step 8.3
Simplify the right side.
Tap for more steps...
Step 8.3.1
Divide by .
Step 9
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 10
Solve for .
Tap for more steps...
Step 10.1
Subtract from .
Step 10.2
Divide each term in by and simplify.
Tap for more steps...
Step 10.2.1
Divide each term in by .
Step 10.2.2
Simplify the left side.
Tap for more steps...
Step 10.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 10.2.2.1.1
Cancel the common factor.
Step 10.2.2.1.2
Divide by .
Step 10.2.3
Simplify the right side.
Tap for more steps...
Step 10.2.3.1
Divide by .
Step 11
The solution to the equation .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Multiply by .
Step 14
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 15
Find the y-value when .
Tap for more steps...
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Tap for more steps...
Step 15.2.1
Simplify each term.
Tap for more steps...
Step 15.2.1.1
Multiply by .
Step 15.2.1.2
Multiply by .
Step 15.2.2
Add and .
Step 15.2.3
The final answer is .
Step 16
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 17
Multiply by .
Step 18
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 19
Find the y-value when .
Tap for more steps...
Step 19.1
Replace the variable with in the expression.
Step 19.2
Simplify the result.
Tap for more steps...
Step 19.2.1
Simplify each term.
Tap for more steps...
Step 19.2.1.1
Multiply by .
Step 19.2.1.2
Multiply by .
Step 19.2.2
Add and .
Step 19.2.3
The final answer is .
Step 20
These are the local extrema for .
is a local maxima
is a local minima
Step 21