Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
The derivative of with respect to is .
Step 1.2.3
Multiply by .
Step 2
Step 2.1
Differentiate.
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
The derivative of with respect to is .
Step 2.3
Subtract from .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Subtract from both sides of the equation.
Step 5
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of .
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Divide by .
Step 5.3
Simplify the right side.
Step 5.3.1
Dividing two negative values results in a positive value.
Step 6
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 7
Step 7.1
Evaluate .
Step 8
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 9
Step 9.1
Remove parentheses.
Step 9.2
Remove parentheses.
Step 9.3
Subtract from .
Step 10
The solution to the equation .
Step 11
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 12
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 13
Step 13.1
Replace the variable with in the expression.
Step 13.2
Simplify the result.
Step 13.2.1
Add and .
Step 13.2.2
The final answer is .
Step 14
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 15
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 16
Step 16.1
Replace the variable with in the expression.
Step 16.2
Simplify the result.
Step 16.2.1
Add and .
Step 16.2.2
The final answer is .
Step 17
These are the local extrema for .
is a local maxima
is a local minima
Step 18