Calculus Examples

Find the Local Maxima and Minima f(x)=x-b natural log of x
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Differentiate.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
The derivative of with respect to is .
Step 1.2.3
Combine and .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Rewrite as .
Step 2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4
Multiply by .
Step 2.2.5
Multiply by .
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Rewrite the expression using the negative exponent rule .
Step 2.3.2
Combine terms.
Tap for more steps...
Step 2.3.2.1
Combine and .
Step 2.3.2.2
Add and .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
Differentiate.
Tap for more steps...
Step 4.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.1.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2
Evaluate .
Tap for more steps...
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
The derivative of with respect to is .
Step 4.1.2.3
Combine and .
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Find the LCD of the terms in the equation.
Tap for more steps...
Step 5.3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 5.3.2
The LCM of one and any expression is the expression.
Step 5.4
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 5.4.1
Multiply each term in by .
Step 5.4.2
Simplify the left side.
Tap for more steps...
Step 5.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.4.2.1.1
Move the leading negative in into the numerator.
Step 5.4.2.1.2
Cancel the common factor.
Step 5.4.2.1.3
Rewrite the expression.
Step 5.5
Solve the equation.
Tap for more steps...
Step 5.5.1
Rewrite the equation as .
Step 5.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.5.2.1
Divide each term in by .
Step 5.5.2.2
Simplify the left side.
Tap for more steps...
Step 5.5.2.2.1
Dividing two negative values results in a positive value.
Step 5.5.2.2.2
Divide by .
Step 5.5.2.3
Simplify the right side.
Tap for more steps...
Step 5.5.2.3.1
Dividing two negative values results in a positive value.
Step 5.5.2.3.2
Divide by .
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
Set the denominator in equal to to find where the expression is undefined.
Step 6.2
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Cancel the common factor of and .
Tap for more steps...
Step 9.1
Raise to the power of .
Step 9.2
Factor out of .
Step 9.3
Cancel the common factors.
Tap for more steps...
Step 9.3.1
Factor out of .
Step 9.3.2
Cancel the common factor.
Step 9.3.3
Rewrite the expression.
Step 10
Since the first derivative test failed, there are no local extrema.
No Local Extrema
Step 11