Calculus Examples

Find the Local Maxima and Minima y=(1/x)^2
Step 1
Write as a function.
Step 2
Find the first derivative of the function.
Tap for more steps...
Step 2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3
Replace all occurrences of with .
Step 2.2
Differentiate using the Power Rule.
Tap for more steps...
Step 2.2.1
Combine and .
Step 2.2.2
Rewrite as .
Step 2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4
Combine fractions.
Tap for more steps...
Step 2.2.4.1
Combine and .
Step 2.2.4.2
Move to the denominator using the negative exponent rule .
Step 2.3
Multiply by by adding the exponents.
Tap for more steps...
Step 2.3.1
Multiply by .
Tap for more steps...
Step 2.3.1.1
Raise to the power of .
Step 2.3.1.2
Use the power rule to combine exponents.
Step 2.3.2
Add and .
Step 3
Find the second derivative of the function.
Tap for more steps...
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Apply basic rules of exponents.
Tap for more steps...
Step 3.2.1
Rewrite as .
Step 3.2.2
Multiply the exponents in .
Tap for more steps...
Step 3.2.2.1
Apply the power rule and multiply exponents, .
Step 3.2.2.2
Multiply by .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
Multiply by .
Step 3.5
Simplify.
Tap for more steps...
Step 3.5.1
Rewrite the expression using the negative exponent rule .
Step 3.5.2
Combine and .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Since there is no value of that makes the first derivative equal to , there are no local extrema.
No Local Extrema
Step 6
No Local Extrema
Step 7