Calculus Examples

Find the Local Maxima and Minima y=|x^2-3x|
Step 1
Write as a function.
Step 2
Find the first derivative of the function.
Tap for more steps...
Step 2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
The derivative of with respect to is .
Step 2.1.3
Replace all occurrences of with .
Step 2.2
Differentiate.
Tap for more steps...
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.2.5
Multiply by .
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Reorder the factors of .
Step 2.3.2
Factor out of .
Tap for more steps...
Step 2.3.2.1
Factor out of .
Step 2.3.2.2
Factor out of .
Step 2.3.2.3
Factor out of .
Step 2.3.3
Simplify the denominator.
Tap for more steps...
Step 2.3.3.1
Factor out of .
Tap for more steps...
Step 2.3.3.1.1
Factor out of .
Step 2.3.3.1.2
Factor out of .
Step 2.3.3.1.3
Factor out of .
Step 2.3.3.2
Apply the distributive property.
Step 2.3.3.3
Multiply by .
Step 2.3.3.4
Move to the left of .
Step 2.3.3.5
Factor out of .
Tap for more steps...
Step 2.3.3.5.1
Factor out of .
Step 2.3.3.5.2
Factor out of .
Step 2.3.3.5.3
Factor out of .
Step 2.3.4
Multiply by .
Step 2.3.5
Reorder factors in .
Step 3
Find the second derivative of the function.
Tap for more steps...
Step 3.1
Differentiate using the Quotient Rule which states that is where and .
Step 3.2
Differentiate using the Product Rule which states that is where and .
Step 3.3
Differentiate.
Tap for more steps...
Step 3.3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.4
Simplify the expression.
Tap for more steps...
Step 3.3.4.1
Add and .
Step 3.3.4.2
Multiply by .
Step 3.4
Differentiate using the Product Rule which states that is where and .
Step 3.5
Differentiate.
Tap for more steps...
Step 3.5.1
By the Sum Rule, the derivative of with respect to is .
Step 3.5.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.5.3
Differentiate using the Power Rule which states that is where .
Step 3.5.4
Multiply by .
Step 3.5.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.5.6
Simplify the expression.
Tap for more steps...
Step 3.5.6.1
Add and .
Step 3.5.6.2
Move to the left of .
Step 3.5.7
Differentiate using the Power Rule which states that is where .
Step 3.5.8
Simplify by adding terms.
Tap for more steps...
Step 3.5.8.1
Multiply by .
Step 3.5.8.2
Add and .
Step 3.6
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.6.1
To apply the Chain Rule, set as .
Step 3.6.2
The derivative of with respect to is .
Step 3.6.3
Replace all occurrences of with .
Step 3.7
Combine and .
Step 3.8
Raise to the power of .
Step 3.9
Raise to the power of .
Step 3.10
Use the power rule to combine exponents.
Step 3.11
Add and .
Step 3.12
Differentiate using the Product Rule which states that is where and .
Step 3.13
Differentiate.
Tap for more steps...
Step 3.13.1
By the Sum Rule, the derivative of with respect to is .
Step 3.13.2
Differentiate using the Power Rule which states that is where .
Step 3.13.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.13.4
Simplify the expression.
Tap for more steps...
Step 3.13.4.1
Add and .
Step 3.13.4.2
Multiply by .
Step 3.13.5
Differentiate using the Power Rule which states that is where .
Step 3.13.6
Simplify by adding terms.
Tap for more steps...
Step 3.13.6.1
Multiply by .
Step 3.13.6.2
Add and .
Step 3.14
Raise to the power of .
Step 3.15
Raise to the power of .
Step 3.16
Use the power rule to combine exponents.
Step 3.17
Add and .
Step 3.18
Combine and .
Step 3.19
Simplify.
Tap for more steps...
Step 3.19.1
Apply the distributive property.
Step 3.19.2
Apply the distributive property.
Step 3.19.3
Apply the distributive property.
Step 3.19.4
Apply the distributive property.
Step 3.19.5
Simplify the numerator.
Tap for more steps...
Step 3.19.5.1
Simplify each term.
Tap for more steps...
Step 3.19.5.1.1
Simplify each term.
Tap for more steps...
Step 3.19.5.1.1.1
Multiply by .
Step 3.19.5.1.1.2
Move to the left of .
Step 3.19.5.1.2
Simplify each term.
Tap for more steps...
Step 3.19.5.1.2.1
Rewrite using the commutative property of multiplication.
Step 3.19.5.1.2.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.1.2.2.1
Move .
Step 3.19.5.1.2.2.2
Multiply by .
Step 3.19.5.1.2.3
Move to the left of .
Step 3.19.5.1.2.4
Expand using the FOIL Method.
Tap for more steps...
Step 3.19.5.1.2.4.1
Apply the distributive property.
Step 3.19.5.1.2.4.2
Apply the distributive property.
Step 3.19.5.1.2.4.3
Apply the distributive property.
Step 3.19.5.1.2.5
Simplify and combine like terms.
Tap for more steps...
Step 3.19.5.1.2.5.1
Simplify each term.
Tap for more steps...
Step 3.19.5.1.2.5.1.1
Rewrite using the commutative property of multiplication.
Step 3.19.5.1.2.5.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.1.2.5.1.2.1
Move .
Step 3.19.5.1.2.5.1.2.2
Multiply by .
Step 3.19.5.1.2.5.1.3
Move to the left of .
Step 3.19.5.1.2.5.1.4
Multiply by .
Step 3.19.5.1.2.5.1.5
Multiply by .
Step 3.19.5.1.2.5.2
Subtract from .
Step 3.19.5.1.3
Add and .
Step 3.19.5.1.4
Subtract from .
Step 3.19.5.1.5
Apply the distributive property.
Step 3.19.5.1.6
Simplify.
Tap for more steps...
Step 3.19.5.1.6.1
Rewrite using the commutative property of multiplication.
Step 3.19.5.1.6.2
Rewrite using the commutative property of multiplication.
Step 3.19.5.1.6.3
Move to the left of .
Step 3.19.5.1.7
Simplify the denominator.
Tap for more steps...
Step 3.19.5.1.7.1
Multiply by .
Step 3.19.5.1.7.2
Move to the left of .
Step 3.19.5.1.7.3
Factor out of .
Tap for more steps...
Step 3.19.5.1.7.3.1
Factor out of .
Step 3.19.5.1.7.3.2
Factor out of .
Step 3.19.5.1.7.3.3
Factor out of .
Step 3.19.5.1.7.4
Apply the distributive property.
Step 3.19.5.1.7.5
Multiply by .
Step 3.19.5.1.7.6
Move to the left of .
Step 3.19.5.1.7.7
Factor out of .
Tap for more steps...
Step 3.19.5.1.7.7.1
Factor out of .
Step 3.19.5.1.7.7.2
Factor out of .
Step 3.19.5.1.7.7.3
Factor out of .
Step 3.19.5.1.8
Apply the distributive property.
Step 3.19.5.1.9
Multiply .
Tap for more steps...
Step 3.19.5.1.9.1
Combine and .
Step 3.19.5.1.9.2
Raise to the power of .
Step 3.19.5.1.9.3
Use the power rule to combine exponents.
Step 3.19.5.1.9.4
Add and .
Step 3.19.5.1.10
Multiply .
Tap for more steps...
Step 3.19.5.1.10.1
Multiply by .
Step 3.19.5.1.10.2
Combine and .
Step 3.19.5.1.11
Simplify the numerator.
Tap for more steps...
Step 3.19.5.1.11.1
Rewrite.
Step 3.19.5.1.11.2
Raise to the power of .
Step 3.19.5.1.11.3
Use the power rule to combine exponents.
Step 3.19.5.1.11.4
Add and .
Step 3.19.5.1.11.5
Remove unnecessary parentheses.
Step 3.19.5.1.12
Combine the numerators over the common denominator.
Step 3.19.5.1.13
Simplify the numerator.
Tap for more steps...
Step 3.19.5.1.13.1
Factor out of .
Tap for more steps...
Step 3.19.5.1.13.1.1
Factor out of .
Step 3.19.5.1.13.1.2
Factor out of .
Step 3.19.5.1.13.1.3
Factor out of .
Step 3.19.5.1.13.2
Combine exponents.
Tap for more steps...
Step 3.19.5.1.13.2.1
Factor out of .
Step 3.19.5.1.13.2.2
Rewrite as .
Step 3.19.5.1.13.2.3
Factor out of .
Step 3.19.5.1.13.2.4
Raise to the power of .
Step 3.19.5.1.13.2.5
Raise to the power of .
Step 3.19.5.1.13.2.6
Use the power rule to combine exponents.
Step 3.19.5.1.13.2.7
Add and .
Step 3.19.5.1.13.3
Factor out negative.
Step 3.19.5.1.14
Move the negative in front of the fraction.
Step 3.19.5.2
To write as a fraction with a common denominator, multiply by .
Step 3.19.5.3
Combine the numerators over the common denominator.
Step 3.19.5.4
Simplify the numerator.
Tap for more steps...
Step 3.19.5.4.1
Factor out of .
Tap for more steps...
Step 3.19.5.4.1.1
Factor out of .
Step 3.19.5.4.1.2
Factor out of .
Step 3.19.5.4.1.3
Factor out of .
Step 3.19.5.4.2
Apply the distributive property.
Step 3.19.5.4.3
Multiply by .
Step 3.19.5.4.4
Move to the left of .
Step 3.19.5.4.5
Multiply .
Tap for more steps...
Step 3.19.5.4.5.1
To multiply absolute values, multiply the terms inside each absolute value.
Step 3.19.5.4.5.2
Raise to the power of .
Step 3.19.5.4.5.3
Raise to the power of .
Step 3.19.5.4.5.4
Use the power rule to combine exponents.
Step 3.19.5.4.5.5
Add and .
Step 3.19.5.4.6
Rewrite as .
Step 3.19.5.4.7
Expand using the FOIL Method.
Tap for more steps...
Step 3.19.5.4.7.1
Apply the distributive property.
Step 3.19.5.4.7.2
Apply the distributive property.
Step 3.19.5.4.7.3
Apply the distributive property.
Step 3.19.5.4.8
Simplify and combine like terms.
Tap for more steps...
Step 3.19.5.4.8.1
Simplify each term.
Tap for more steps...
Step 3.19.5.4.8.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.8.1.1.1
Use the power rule to combine exponents.
Step 3.19.5.4.8.1.1.2
Add and .
Step 3.19.5.4.8.1.2
Rewrite using the commutative property of multiplication.
Step 3.19.5.4.8.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.8.1.3.1
Move .
Step 3.19.5.4.8.1.3.2
Multiply by .
Tap for more steps...
Step 3.19.5.4.8.1.3.2.1
Raise to the power of .
Step 3.19.5.4.8.1.3.2.2
Use the power rule to combine exponents.
Step 3.19.5.4.8.1.3.3
Add and .
Step 3.19.5.4.8.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.8.1.4.1
Move .
Step 3.19.5.4.8.1.4.2
Multiply by .
Tap for more steps...
Step 3.19.5.4.8.1.4.2.1
Raise to the power of .
Step 3.19.5.4.8.1.4.2.2
Use the power rule to combine exponents.
Step 3.19.5.4.8.1.4.3
Add and .
Step 3.19.5.4.8.1.5
Rewrite using the commutative property of multiplication.
Step 3.19.5.4.8.1.6
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.8.1.6.1
Move .
Step 3.19.5.4.8.1.6.2
Multiply by .
Step 3.19.5.4.8.1.7
Multiply by .
Step 3.19.5.4.8.2
Subtract from .
Step 3.19.5.4.9
Rewrite as .
Step 3.19.5.4.10
Expand using the FOIL Method.
Tap for more steps...
Step 3.19.5.4.10.1
Apply the distributive property.
Step 3.19.5.4.10.2
Apply the distributive property.
Step 3.19.5.4.10.3
Apply the distributive property.
Step 3.19.5.4.11
Simplify and combine like terms.
Tap for more steps...
Step 3.19.5.4.11.1
Simplify each term.
Tap for more steps...
Step 3.19.5.4.11.1.1
Rewrite using the commutative property of multiplication.
Step 3.19.5.4.11.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.11.1.2.1
Move .
Step 3.19.5.4.11.1.2.2
Multiply by .
Step 3.19.5.4.11.1.3
Multiply by .
Step 3.19.5.4.11.1.4
Multiply by .
Step 3.19.5.4.11.1.5
Multiply by .
Step 3.19.5.4.11.1.6
Multiply by .
Step 3.19.5.4.11.2
Subtract from .
Step 3.19.5.4.12
Apply the distributive property.
Step 3.19.5.4.13
Simplify.
Tap for more steps...
Step 3.19.5.4.13.1
Multiply by .
Step 3.19.5.4.13.2
Multiply by .
Step 3.19.5.4.13.3
Multiply by .
Step 3.19.5.4.14
Rewrite as .
Step 3.19.5.4.15
Expand using the FOIL Method.
Tap for more steps...
Step 3.19.5.4.15.1
Apply the distributive property.
Step 3.19.5.4.15.2
Apply the distributive property.
Step 3.19.5.4.15.3
Apply the distributive property.
Step 3.19.5.4.16
Simplify and combine like terms.
Tap for more steps...
Step 3.19.5.4.16.1
Simplify each term.
Tap for more steps...
Step 3.19.5.4.16.1.1
Rewrite using the commutative property of multiplication.
Step 3.19.5.4.16.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.16.1.2.1
Move .
Step 3.19.5.4.16.1.2.2
Multiply by .
Step 3.19.5.4.16.1.3
Multiply by .
Step 3.19.5.4.16.1.4
Multiply by .
Step 3.19.5.4.16.1.5
Multiply by .
Step 3.19.5.4.16.1.6
Multiply by .
Step 3.19.5.4.16.1.7
Multiply by .
Step 3.19.5.4.16.2
Subtract from .
Step 3.19.5.4.17
Expand by multiplying each term in the first expression by each term in the second expression.
Step 3.19.5.4.18
Simplify each term.
Tap for more steps...
Step 3.19.5.4.18.1
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.18.1.1
Move .
Step 3.19.5.4.18.1.2
Use the power rule to combine exponents.
Step 3.19.5.4.18.1.3
Add and .
Step 3.19.5.4.18.2
Rewrite using the commutative property of multiplication.
Step 3.19.5.4.18.3
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.18.3.1
Move .
Step 3.19.5.4.18.3.2
Multiply by .
Tap for more steps...
Step 3.19.5.4.18.3.2.1
Raise to the power of .
Step 3.19.5.4.18.3.2.2
Use the power rule to combine exponents.
Step 3.19.5.4.18.3.3
Add and .
Step 3.19.5.4.18.4
Multiply by .
Step 3.19.5.4.18.5
Multiply by .
Step 3.19.5.4.18.6
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.18.6.1
Move .
Step 3.19.5.4.18.6.2
Multiply by .
Tap for more steps...
Step 3.19.5.4.18.6.2.1
Raise to the power of .
Step 3.19.5.4.18.6.2.2
Use the power rule to combine exponents.
Step 3.19.5.4.18.6.3
Add and .
Step 3.19.5.4.18.7
Rewrite using the commutative property of multiplication.
Step 3.19.5.4.18.8
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.4.18.8.1
Move .
Step 3.19.5.4.18.8.2
Multiply by .
Step 3.19.5.4.18.9
Multiply by .
Step 3.19.5.4.18.10
Multiply by .
Step 3.19.5.4.18.11
Multiply by .
Step 3.19.5.4.18.12
Multiply by .
Step 3.19.5.4.19
Add and .
Step 3.19.5.4.20
Subtract from .
Step 3.19.5.4.21
Subtract from .
Step 3.19.5.4.22
Add and .
Step 3.19.5.4.23
Reorder terms.
Step 3.19.5.5
To write as a fraction with a common denominator, multiply by .
Step 3.19.5.6
Combine and .
Step 3.19.5.7
Combine the numerators over the common denominator.
Step 3.19.5.8
Simplify the numerator.
Tap for more steps...
Step 3.19.5.8.1
Factor out of .
Tap for more steps...
Step 3.19.5.8.1.1
Factor out of .
Step 3.19.5.8.1.2
Factor out of .
Step 3.19.5.8.1.3
Factor out of .
Step 3.19.5.8.2
Apply the distributive property.
Step 3.19.5.8.3
Multiply by .
Step 3.19.5.8.4
Move to the left of .
Step 3.19.5.8.5
Multiply .
Tap for more steps...
Step 3.19.5.8.5.1
To multiply absolute values, multiply the terms inside each absolute value.
Step 3.19.5.8.5.2
Raise to the power of .
Step 3.19.5.8.5.3
Raise to the power of .
Step 3.19.5.8.5.4
Use the power rule to combine exponents.
Step 3.19.5.8.5.5
Add and .
Step 3.19.5.8.6
Rewrite as .
Step 3.19.5.8.7
Expand using the FOIL Method.
Tap for more steps...
Step 3.19.5.8.7.1
Apply the distributive property.
Step 3.19.5.8.7.2
Apply the distributive property.
Step 3.19.5.8.7.3
Apply the distributive property.
Step 3.19.5.8.8
Simplify and combine like terms.
Tap for more steps...
Step 3.19.5.8.8.1
Simplify each term.
Tap for more steps...
Step 3.19.5.8.8.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.8.1.1.1
Use the power rule to combine exponents.
Step 3.19.5.8.8.1.1.2
Add and .
Step 3.19.5.8.8.1.2
Rewrite using the commutative property of multiplication.
Step 3.19.5.8.8.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.8.1.3.1
Move .
Step 3.19.5.8.8.1.3.2
Multiply by .
Tap for more steps...
Step 3.19.5.8.8.1.3.2.1
Raise to the power of .
Step 3.19.5.8.8.1.3.2.2
Use the power rule to combine exponents.
Step 3.19.5.8.8.1.3.3
Add and .
Step 3.19.5.8.8.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.8.1.4.1
Move .
Step 3.19.5.8.8.1.4.2
Multiply by .
Tap for more steps...
Step 3.19.5.8.8.1.4.2.1
Raise to the power of .
Step 3.19.5.8.8.1.4.2.2
Use the power rule to combine exponents.
Step 3.19.5.8.8.1.4.3
Add and .
Step 3.19.5.8.8.1.5
Rewrite using the commutative property of multiplication.
Step 3.19.5.8.8.1.6
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.8.1.6.1
Move .
Step 3.19.5.8.8.1.6.2
Multiply by .
Step 3.19.5.8.8.1.7
Multiply by .
Step 3.19.5.8.8.2
Subtract from .
Step 3.19.5.8.9
Apply the distributive property.
Step 3.19.5.8.10
Simplify.
Tap for more steps...
Step 3.19.5.8.10.1
Rewrite using the commutative property of multiplication.
Step 3.19.5.8.10.2
Rewrite using the commutative property of multiplication.
Step 3.19.5.8.10.3
Rewrite using the commutative property of multiplication.
Step 3.19.5.8.10.4
Rewrite using the commutative property of multiplication.
Step 3.19.5.8.10.5
Rewrite using the commutative property of multiplication.
Step 3.19.5.8.10.6
Move to the left of .
Step 3.19.5.8.11
Simplify each term.
Tap for more steps...
Step 3.19.5.8.11.1
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.11.1.1
Move .
Step 3.19.5.8.11.1.2
Multiply by .
Tap for more steps...
Step 3.19.5.8.11.1.2.1
Raise to the power of .
Step 3.19.5.8.11.1.2.2
Use the power rule to combine exponents.
Step 3.19.5.8.11.1.3
Add and .
Step 3.19.5.8.11.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.11.2.1
Move .
Step 3.19.5.8.11.2.2
Multiply by .
Tap for more steps...
Step 3.19.5.8.11.2.2.1
Raise to the power of .
Step 3.19.5.8.11.2.2.2
Use the power rule to combine exponents.
Step 3.19.5.8.11.2.3
Add and .
Step 3.19.5.8.11.3
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.11.3.1
Move .
Step 3.19.5.8.11.3.2
Multiply by .
Tap for more steps...
Step 3.19.5.8.11.3.2.1
Raise to the power of .
Step 3.19.5.8.11.3.2.2
Use the power rule to combine exponents.
Step 3.19.5.8.11.3.3
Add and .
Step 3.19.5.8.11.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.8.11.4.1
Move .
Step 3.19.5.8.11.4.2
Multiply by .
Step 3.19.5.8.12
Reorder terms.
Step 3.19.5.9
To write as a fraction with a common denominator, multiply by .
Step 3.19.5.10
Combine the numerators over the common denominator.
Step 3.19.5.11
Simplify the numerator.
Tap for more steps...
Step 3.19.5.11.1
Apply the distributive property.
Step 3.19.5.11.2
Multiply by .
Step 3.19.5.11.3
Move to the left of .
Step 3.19.5.11.4
Multiply .
Tap for more steps...
Step 3.19.5.11.4.1
To multiply absolute values, multiply the terms inside each absolute value.
Step 3.19.5.11.4.2
Raise to the power of .
Step 3.19.5.11.4.3
Raise to the power of .
Step 3.19.5.11.4.4
Use the power rule to combine exponents.
Step 3.19.5.11.4.5
Add and .
Step 3.19.5.11.5
Rewrite as .
Step 3.19.5.11.6
Expand using the FOIL Method.
Tap for more steps...
Step 3.19.5.11.6.1
Apply the distributive property.
Step 3.19.5.11.6.2
Apply the distributive property.
Step 3.19.5.11.6.3
Apply the distributive property.
Step 3.19.5.11.7
Simplify and combine like terms.
Tap for more steps...
Step 3.19.5.11.7.1
Simplify each term.
Tap for more steps...
Step 3.19.5.11.7.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.7.1.1.1
Use the power rule to combine exponents.
Step 3.19.5.11.7.1.1.2
Add and .
Step 3.19.5.11.7.1.2
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.7.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.7.1.3.1
Move .
Step 3.19.5.11.7.1.3.2
Multiply by .
Tap for more steps...
Step 3.19.5.11.7.1.3.2.1
Raise to the power of .
Step 3.19.5.11.7.1.3.2.2
Use the power rule to combine exponents.
Step 3.19.5.11.7.1.3.3
Add and .
Step 3.19.5.11.7.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.7.1.4.1
Move .
Step 3.19.5.11.7.1.4.2
Multiply by .
Tap for more steps...
Step 3.19.5.11.7.1.4.2.1
Raise to the power of .
Step 3.19.5.11.7.1.4.2.2
Use the power rule to combine exponents.
Step 3.19.5.11.7.1.4.3
Add and .
Step 3.19.5.11.7.1.5
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.7.1.6
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.7.1.6.1
Move .
Step 3.19.5.11.7.1.6.2
Multiply by .
Step 3.19.5.11.7.1.7
Multiply by .
Step 3.19.5.11.7.2
Subtract from .
Step 3.19.5.11.8
Apply the distributive property.
Step 3.19.5.11.9
Simplify.
Tap for more steps...
Step 3.19.5.11.9.1
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.9.2
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.9.3
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.9.4
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.9.5
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.9.6
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.9.7
Rewrite using the commutative property of multiplication.
Step 3.19.5.11.10
Simplify each term.
Tap for more steps...
Step 3.19.5.11.10.1
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.10.1.1
Move .
Step 3.19.5.11.10.1.2
Multiply by .
Tap for more steps...
Step 3.19.5.11.10.1.2.1
Raise to the power of .
Step 3.19.5.11.10.1.2.2
Use the power rule to combine exponents.
Step 3.19.5.11.10.1.3
Add and .
Step 3.19.5.11.10.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.10.2.1
Move .
Step 3.19.5.11.10.2.2
Multiply by .
Tap for more steps...
Step 3.19.5.11.10.2.2.1
Raise to the power of .
Step 3.19.5.11.10.2.2.2
Use the power rule to combine exponents.
Step 3.19.5.11.10.2.3
Add and .
Step 3.19.5.11.10.3
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.10.3.1
Move .
Step 3.19.5.11.10.3.2
Multiply by .
Tap for more steps...
Step 3.19.5.11.10.3.2.1
Raise to the power of .
Step 3.19.5.11.10.3.2.2
Use the power rule to combine exponents.
Step 3.19.5.11.10.3.3
Add and .
Step 3.19.5.11.10.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.10.4.1
Move .
Step 3.19.5.11.10.4.2
Multiply by .
Tap for more steps...
Step 3.19.5.11.10.4.2.1
Raise to the power of .
Step 3.19.5.11.10.4.2.2
Use the power rule to combine exponents.
Step 3.19.5.11.10.4.3
Add and .
Step 3.19.5.11.10.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.10.5.1
Move .
Step 3.19.5.11.10.5.2
Multiply by .
Step 3.19.5.11.10.6
Multiply by by adding the exponents.
Tap for more steps...
Step 3.19.5.11.10.6.1
Move .
Step 3.19.5.11.10.6.2
Multiply by .
Step 3.19.5.11.11
Reorder terms.
Step 3.19.5.12
Factor out of .
Step 3.19.5.13
Factor out of .
Step 3.19.5.14
Factor out of .
Step 3.19.5.15
Factor out of .
Step 3.19.5.16
Factor out of .
Step 3.19.5.17
Factor out of .
Step 3.19.5.18
Factor out of .
Step 3.19.5.19
Factor out of .
Step 3.19.5.20
Factor out of .
Step 3.19.5.21
Factor out of .
Step 3.19.5.22
Factor out of .
Step 3.19.5.23
Factor out of .
Step 3.19.5.24
Factor out of .
Step 3.19.5.25
Factor out of .
Step 3.19.5.26
Factor out of .
Step 3.19.5.27
Rewrite as .
Step 3.19.5.28
Move the negative in front of the fraction.
Step 3.19.6
Combine terms.
Tap for more steps...
Step 3.19.6.1
Raise to the power of .
Step 3.19.6.2
Raise to the power of .
Step 3.19.6.3
Use the power rule to combine exponents.
Step 3.19.6.4
Add and .
Step 3.19.6.5
Move to the left of .
Step 3.19.6.6
Rewrite as a product.
Step 3.19.6.7
Multiply by .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Find the first derivative.
Tap for more steps...
Step 5.1
Find the first derivative.
Tap for more steps...
Step 5.1.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 5.1.1.1
To apply the Chain Rule, set as .
Step 5.1.1.2
The derivative of with respect to is .
Step 5.1.1.3
Replace all occurrences of with .
Step 5.1.2
Differentiate.
Tap for more steps...
Step 5.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 5.1.2.2
Differentiate using the Power Rule which states that is where .
Step 5.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.2.4
Differentiate using the Power Rule which states that is where .
Step 5.1.2.5
Multiply by .
Step 5.1.3
Simplify.
Tap for more steps...
Step 5.1.3.1
Reorder the factors of .
Step 5.1.3.2
Factor out of .
Tap for more steps...
Step 5.1.3.2.1
Factor out of .
Step 5.1.3.2.2
Factor out of .
Step 5.1.3.2.3
Factor out of .
Step 5.1.3.3
Simplify the denominator.
Tap for more steps...
Step 5.1.3.3.1
Factor out of .
Tap for more steps...
Step 5.1.3.3.1.1
Factor out of .
Step 5.1.3.3.1.2
Factor out of .
Step 5.1.3.3.1.3
Factor out of .
Step 5.1.3.3.2
Apply the distributive property.
Step 5.1.3.3.3
Multiply by .
Step 5.1.3.3.4
Move to the left of .
Step 5.1.3.3.5
Factor out of .
Tap for more steps...
Step 5.1.3.3.5.1
Factor out of .
Step 5.1.3.3.5.2
Factor out of .
Step 5.1.3.3.5.3
Factor out of .
Step 5.1.3.4
Multiply by .
Step 5.1.3.5
Reorder factors in .
Step 5.2
The first derivative of with respect to is .
Step 6
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 6.1
Set the first derivative equal to .
Step 6.2
Set the numerator equal to zero.
Step 6.3
Solve the equation for .
Tap for more steps...
Step 6.3.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6.3.2
Set equal to .
Step 6.3.3
Set equal to and solve for .
Tap for more steps...
Step 6.3.3.1
Set equal to .
Step 6.3.3.2
Solve for .
Tap for more steps...
Step 6.3.3.2.1
Add to both sides of the equation.
Step 6.3.3.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 6.3.3.2.2.1
Divide each term in by .
Step 6.3.3.2.2.2
Simplify the left side.
Tap for more steps...
Step 6.3.3.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.3.2.2.2.1.1
Cancel the common factor.
Step 6.3.3.2.2.2.1.2
Divide by .
Step 6.3.4
Set equal to and solve for .
Tap for more steps...
Step 6.3.4.1
Set equal to .
Step 6.3.4.2
Add to both sides of the equation.
Step 6.3.5
The final solution is all the values that make true.
Step 6.4
Exclude the solutions that do not make true.
Step 7
Find the values where the derivative is undefined.
Tap for more steps...
Step 7.1
Set the denominator in equal to to find where the expression is undefined.
Step 7.2
Solve for .
Tap for more steps...
Step 7.2.1
Remove the absolute value term. This creates a on the right side of the equation because .
Step 7.2.2
Plus or minus is .
Step 7.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 7.2.4
Set equal to .
Step 7.2.5
Set equal to and solve for .
Tap for more steps...
Step 7.2.5.1
Set equal to .
Step 7.2.5.2
Add to both sides of the equation.
Step 7.2.6
The final solution is all the values that make true.
Step 7.3
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 8
Critical points to evaluate.
Step 9
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 10
Evaluate the second derivative.
Tap for more steps...
Step 10.1
Simplify the numerator.
Tap for more steps...
Step 10.1.1
Apply the product rule to .
Step 10.1.2
Raise to the power of .
Step 10.1.3
Raise to the power of .
Step 10.1.4
Cancel the common factor of .
Tap for more steps...
Step 10.1.4.1
Factor out of .
Step 10.1.4.2
Cancel the common factor.
Step 10.1.4.3
Rewrite the expression.
Step 10.1.5
Apply the product rule to .
Step 10.1.6
Raise to the power of .
Step 10.1.7
Raise to the power of .
Step 10.1.8
Cancel the common factor of .
Tap for more steps...
Step 10.1.8.1
Factor out of .
Step 10.1.8.2
Factor out of .
Step 10.1.8.3
Cancel the common factor.
Step 10.1.8.4
Rewrite the expression.
Step 10.1.9
Combine and .
Step 10.1.10
Multiply by .
Step 10.1.11
Move the negative in front of the fraction.
Step 10.1.12
Apply the product rule to .
Step 10.1.13
Raise to the power of .
Step 10.1.14
Raise to the power of .
Step 10.1.15
Multiply .
Tap for more steps...
Step 10.1.15.1
Combine and .
Step 10.1.15.2
Multiply by .
Step 10.1.16
Apply the product rule to .
Step 10.1.17
Raise to the power of .
Step 10.1.18
Raise to the power of .
Step 10.1.19
Cancel the common factor of .
Tap for more steps...
Step 10.1.19.1
Factor out of .
Step 10.1.19.2
Factor out of .
Step 10.1.19.3
Cancel the common factor.
Step 10.1.19.4
Rewrite the expression.
Step 10.1.20
Combine and .
Step 10.1.21
Multiply by .
Step 10.1.22
Move the negative in front of the fraction.
Step 10.1.23
Apply the product rule to .
Step 10.1.24
Raise to the power of .
Step 10.1.25
Raise to the power of .
Step 10.1.26
Multiply .
Tap for more steps...
Step 10.1.26.1
Combine and .
Step 10.1.26.2
Multiply by .
Step 10.1.27
Apply the product rule to .
Step 10.1.28
Raise to the power of .
Step 10.1.29
Raise to the power of .
Step 10.1.30
Cancel the common factor of .
Tap for more steps...
Step 10.1.30.1
Factor out of .
Step 10.1.30.2
Factor out of .
Step 10.1.30.3
Cancel the common factor.
Step 10.1.30.4
Rewrite the expression.
Step 10.1.31
Combine and .
Step 10.1.32
Multiply by .
Step 10.1.33
Move the negative in front of the fraction.
Step 10.1.34
Simplify each term.
Tap for more steps...
Step 10.1.34.1
Apply the product rule to .
Step 10.1.34.2
Raise to the power of .
Step 10.1.34.3
Raise to the power of .
Step 10.1.34.4
Apply the product rule to .
Step 10.1.34.5
Raise to the power of .
Step 10.1.34.6
Raise to the power of .
Step 10.1.34.7
Cancel the common factor of .
Tap for more steps...
Step 10.1.34.7.1
Factor out of .
Step 10.1.34.7.2
Factor out of .
Step 10.1.34.7.3
Cancel the common factor.
Step 10.1.34.7.4
Rewrite the expression.
Step 10.1.34.8
Combine and .
Step 10.1.34.9
Multiply by .
Step 10.1.34.10
Move the negative in front of the fraction.
Step 10.1.34.11
Apply the product rule to .
Step 10.1.34.12
Raise to the power of .
Step 10.1.34.13
Raise to the power of .
Step 10.1.34.14
Multiply .
Tap for more steps...
Step 10.1.34.14.1
Combine and .
Step 10.1.34.14.2
Multiply by .
Step 10.1.35
Combine the numerators over the common denominator.
Step 10.1.36
Add and .
Step 10.1.37
Divide by .
Step 10.1.38
Add and .
Step 10.1.39
Remove non-negative terms from the absolute value.
Step 10.1.40
Multiply .
Tap for more steps...
Step 10.1.40.1
Multiply by .
Step 10.1.40.2
Multiply by .
Step 10.1.40.3
Multiply by .
Step 10.1.41
Cancel the common factor of .
Tap for more steps...
Step 10.1.41.1
Factor out of .
Step 10.1.41.2
Cancel the common factor.
Step 10.1.41.3
Rewrite the expression.
Step 10.1.42
Multiply by .
Step 10.1.43
Simplify each term.
Tap for more steps...
Step 10.1.43.1
Apply the product rule to .
Step 10.1.43.2
Raise to the power of .
Step 10.1.43.3
Raise to the power of .
Step 10.1.43.4
Apply the product rule to .
Step 10.1.43.5
Raise to the power of .
Step 10.1.43.6
Raise to the power of .
Step 10.1.43.7
Cancel the common factor of .
Tap for more steps...
Step 10.1.43.7.1
Factor out of .
Step 10.1.43.7.2
Factor out of .
Step 10.1.43.7.3
Cancel the common factor.
Step 10.1.43.7.4
Rewrite the expression.
Step 10.1.43.8
Combine and .
Step 10.1.43.9
Multiply by .
Step 10.1.43.10
Move the negative in front of the fraction.
Step 10.1.43.11
Apply the product rule to .
Step 10.1.43.12
Raise to the power of .
Step 10.1.43.13
Raise to the power of .
Step 10.1.43.14
Multiply .
Tap for more steps...
Step 10.1.43.14.1
Combine and .
Step 10.1.43.14.2
Multiply by .
Step 10.1.44
Combine the numerators over the common denominator.
Step 10.1.45
Add and .
Step 10.1.46
Divide by .
Step 10.1.47
Add and .
Step 10.1.48
is approximately which is positive so remove the absolute value
Step 10.1.49
Multiply .
Tap for more steps...
Step 10.1.49.1
Combine and .
Step 10.1.49.2
Multiply by .
Step 10.1.50
Simplify each term.
Tap for more steps...
Step 10.1.50.1
Apply the product rule to .
Step 10.1.50.2
Raise to the power of .
Step 10.1.50.3
Raise to the power of .
Step 10.1.50.4
Apply the product rule to .
Step 10.1.50.5
Raise to the power of .
Step 10.1.50.6
Raise to the power of .
Step 10.1.50.7
Cancel the common factor of .
Tap for more steps...
Step 10.1.50.7.1
Factor out of .
Step 10.1.50.7.2
Factor out of .
Step 10.1.50.7.3
Cancel the common factor.
Step 10.1.50.7.4
Rewrite the expression.
Step 10.1.50.8
Combine and .
Step 10.1.50.9
Multiply by .
Step 10.1.50.10
Move the negative in front of the fraction.
Step 10.1.50.11
Apply the product rule to .
Step 10.1.50.12
Raise to the power of .
Step 10.1.50.13
Raise to the power of .
Step 10.1.50.14
Multiply .
Tap for more steps...
Step 10.1.50.14.1
Combine and .
Step 10.1.50.14.2
Multiply by .
Step 10.1.51
Combine the numerators over the common denominator.
Step 10.1.52
Add and .
Step 10.1.53
Divide by .
Step 10.1.54
Add and .
Step 10.1.55
is approximately which is positive so remove the absolute value
Step 10.1.56
Multiply .
Tap for more steps...
Step 10.1.56.1
Combine and .
Step 10.1.56.2
Multiply by .
Step 10.1.57
Move the negative in front of the fraction.
Step 10.1.58
To write as a fraction with a common denominator, multiply by .
Step 10.1.59
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 10.1.59.1
Multiply by .
Step 10.1.59.2
Multiply by .
Step 10.1.60
Combine the numerators over the common denominator.
Step 10.1.61
Simplify the numerator.
Tap for more steps...
Step 10.1.61.1
Multiply by .
Step 10.1.61.2
Subtract from .
Step 10.1.62
Combine the numerators over the common denominator.
Step 10.1.63
Add and .
Step 10.1.64
To write as a fraction with a common denominator, multiply by .
Step 10.1.65
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 10.1.65.1
Multiply by .
Step 10.1.65.2
Multiply by .
Step 10.1.66
Combine the numerators over the common denominator.
Step 10.1.67
Simplify the numerator.
Tap for more steps...
Step 10.1.67.1
Multiply by .
Step 10.1.67.2
Subtract from .
Step 10.1.68
To write as a fraction with a common denominator, multiply by .
Step 10.1.69
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 10.1.69.1
Multiply by .
Step 10.1.69.2
Multiply by .
Step 10.1.70
Combine the numerators over the common denominator.
Step 10.1.71
Simplify the numerator.
Tap for more steps...
Step 10.1.71.1
Multiply by .
Step 10.1.71.2
Add and .
Step 10.1.72
To write as a fraction with a common denominator, multiply by .
Step 10.1.73
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 10.1.73.1
Multiply by .
Step 10.1.73.2
Multiply by .
Step 10.1.74
Combine the numerators over the common denominator.
Step 10.1.75
Simplify the numerator.
Tap for more steps...
Step 10.1.75.1
Multiply by .
Step 10.1.75.2
Subtract from .
Step 10.1.76
To write as a fraction with a common denominator, multiply by .
Step 10.1.77
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 10.1.77.1
Multiply by .
Step 10.1.77.2
Multiply by .
Step 10.1.78
Combine the numerators over the common denominator.
Step 10.1.79
Simplify the numerator.
Tap for more steps...
Step 10.1.79.1
Multiply by .
Step 10.1.79.2
Add and .
Step 10.1.80
To write as a fraction with a common denominator, multiply by .
Step 10.1.81
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 10.1.81.1
Multiply by .
Step 10.1.81.2
Multiply by .
Step 10.1.82
Combine the numerators over the common denominator.
Step 10.1.83
Simplify the numerator.
Tap for more steps...
Step 10.1.83.1
Multiply by .
Step 10.1.83.2
Subtract from .
Step 10.2
Simplify the denominator.
Tap for more steps...
Step 10.2.1
Apply the product rule to .
Step 10.2.2
Raise to the power of .
Step 10.2.3
Raise to the power of .
Step 10.2.4
Multiply .
Tap for more steps...
Step 10.2.4.1
Combine and .
Step 10.2.4.2
Multiply by .
Step 10.2.5
Move the negative in front of the fraction.
Step 10.2.6
To write as a fraction with a common denominator, multiply by .
Step 10.2.7
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 10.2.7.1
Multiply by .
Step 10.2.7.2
Multiply by .
Step 10.2.8
Combine the numerators over the common denominator.
Step 10.2.9
Simplify the numerator.
Tap for more steps...
Step 10.2.9.1
Multiply by .
Step 10.2.9.2
Subtract from .
Step 10.2.10
Move the negative in front of the fraction.
Step 10.2.11
To write as a fraction with a common denominator, multiply by .
Step 10.2.12
Combine and .
Step 10.2.13
Combine the numerators over the common denominator.
Step 10.2.14
Simplify the numerator.
Tap for more steps...
Step 10.2.14.1
Multiply by .
Step 10.2.14.2
Subtract from .
Step 10.2.15
Move the negative in front of the fraction.
Step 10.2.16
Combine exponents.
Tap for more steps...
Step 10.2.16.1
Factor out negative.
Step 10.2.16.2
Multiply by .
Step 10.2.16.3
Multiply by .
Step 10.2.16.4
Multiply by .
Step 10.2.17
is approximately which is negative so negate and remove the absolute value
Step 10.2.18
Apply the product rule to .
Step 10.2.19
Raise to the power of .
Step 10.2.20
Raise to the power of .
Step 10.2.21
is approximately which is negative so negate and remove the absolute value
Step 10.3
Combine fractions.
Tap for more steps...
Step 10.3.1
Multiply by .
Step 10.3.2
Multiply.
Tap for more steps...
Step 10.3.2.1
Multiply by .
Step 10.3.2.2
Multiply by .
Step 10.4
Multiply the numerator by the reciprocal of the denominator.
Step 10.5
Cancel the common factor of .
Tap for more steps...
Step 10.5.1
Cancel the common factor.
Step 10.5.2
Rewrite the expression.
Step 10.6
Cancel the common factor of .
Tap for more steps...
Step 10.6.1
Factor out of .
Step 10.6.2
Cancel the common factor.
Step 10.6.3
Rewrite the expression.
Step 10.7
Multiply by .
Step 11
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 12
Find the y-value when .
Tap for more steps...
Step 12.1
Replace the variable with in the expression.
Step 12.2
Simplify the result.
Tap for more steps...
Step 12.2.1
Simplify each term.
Tap for more steps...
Step 12.2.1.1
Apply the product rule to .
Step 12.2.1.2
Raise to the power of .
Step 12.2.1.3
Raise to the power of .
Step 12.2.1.4
Multiply .
Tap for more steps...
Step 12.2.1.4.1
Combine and .
Step 12.2.1.4.2
Multiply by .
Step 12.2.1.5
Move the negative in front of the fraction.
Step 12.2.2
To write as a fraction with a common denominator, multiply by .
Step 12.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 12.2.3.1
Multiply by .
Step 12.2.3.2
Multiply by .
Step 12.2.4
Combine the numerators over the common denominator.
Step 12.2.5
Simplify the numerator.
Tap for more steps...
Step 12.2.5.1
Multiply by .
Step 12.2.5.2
Subtract from .
Step 12.2.6
Move the negative in front of the fraction.
Step 12.2.7
is approximately which is negative so negate and remove the absolute value
Step 12.2.8
The final answer is .
Step 13
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 14
Evaluate the second derivative.
Tap for more steps...
Step 14.1
Simplify each term.
Tap for more steps...
Step 14.1.1
Raising to any positive power yields .
Step 14.1.2
Multiply by .
Step 14.2
Add and .
Step 14.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 14.4
Raising to any positive power yields .
Step 14.5
Subtract from .
Step 14.6
Multiply by .
Step 14.7
The absolute value is the distance between a number and zero. The distance between and is .
Step 14.8
Multiply by .
Step 14.9
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Step 15
Since there is at least one point with or undefined second derivative, apply the first derivative test.
Tap for more steps...
Step 15.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 15.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 15.2.1
Replace the variable with in the expression.
Step 15.2.2
Simplify the result.
Tap for more steps...
Step 15.2.2.1
Simplify the numerator.
Tap for more steps...
Step 15.2.2.1.1
Multiply by .
Step 15.2.2.1.2
Subtract from .
Step 15.2.2.1.3
Multiply by .
Step 15.2.2.1.4
Subtract from .
Step 15.2.2.2
Simplify the denominator.
Tap for more steps...
Step 15.2.2.2.1
Subtract from .
Step 15.2.2.2.2
Multiply by .
Step 15.2.2.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 15.2.2.3
Simplify the expression.
Tap for more steps...
Step 15.2.2.3.1
Multiply by .
Step 15.2.2.3.2
Divide by .
Step 15.2.2.4
The final answer is .
Step 15.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 15.3.1
Replace the variable with in the expression.
Step 15.3.2
Simplify the result.
Tap for more steps...
Step 15.3.2.1
Multiply by .
Step 15.3.2.2
Simplify the denominator.
Tap for more steps...
Step 15.3.2.2.1
Multiply by .
Step 15.3.2.2.2
Subtract from .
Step 15.3.2.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 15.3.2.3
Simplify the numerator.
Tap for more steps...
Step 15.3.2.3.1
Multiply by .
Step 15.3.2.3.2
Subtract from .
Step 15.3.2.3.3
Subtract from .
Step 15.3.2.4
Simplify the expression.
Tap for more steps...
Step 15.3.2.4.1
Multiply by .
Step 15.3.2.4.2
Divide by .
Step 15.3.2.5
The final answer is .
Step 15.4
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 15.4.1
Replace the variable with in the expression.
Step 15.4.2
Simplify the result.
Tap for more steps...
Step 15.4.2.1
Simplify the numerator.
Tap for more steps...
Step 15.4.2.1.1
Multiply by .
Step 15.4.2.1.2
Subtract from .
Step 15.4.2.1.3
Multiply by .
Step 15.4.2.1.4
Subtract from .
Step 15.4.2.2
Simplify the denominator.
Tap for more steps...
Step 15.4.2.2.1
Subtract from .
Step 15.4.2.2.2
Multiply by .
Step 15.4.2.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 15.4.2.3
Simplify the expression.
Tap for more steps...
Step 15.4.2.3.1
Multiply by .
Step 15.4.2.3.2
Divide by .
Step 15.4.2.4
The final answer is .
Step 15.5
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 15.5.1
Replace the variable with in the expression.
Step 15.5.2
Simplify the result.
Tap for more steps...
Step 15.5.2.1
Simplify the numerator.
Tap for more steps...
Step 15.5.2.1.1
Multiply by .
Step 15.5.2.1.2
Subtract from .
Step 15.5.2.1.3
Multiply by .
Step 15.5.2.1.4
Subtract from .
Step 15.5.2.2
Simplify the denominator.
Tap for more steps...
Step 15.5.2.2.1
Subtract from .
Step 15.5.2.2.2
Multiply by .
Step 15.5.2.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 15.5.2.3
Simplify the expression.
Tap for more steps...
Step 15.5.2.3.1
Multiply by .
Step 15.5.2.3.2
Divide by .
Step 15.5.2.4
The final answer is .
Step 15.6
Since the first derivative changed signs from negative to positive around , then is a local minimum.
is a local minimum
Step 15.7
Since the first derivative changed signs from positive to negative around , then is a local maximum.
is a local maximum
Step 15.8
Since the first derivative changed signs from negative to positive around , then is a local minimum.
is a local minimum
Step 15.9
These are the local extrema for .
is a local minimum
is a local maximum
is a local minimum
is a local minimum
is a local maximum
is a local minimum
Step 16