Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
Differentiate.
Step 2.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.4
Add and .
Step 2.1.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.6
Multiply by .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Differentiate.
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Multiply by .
Step 2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.3.4
Multiply by .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the chain rule, which states that is where and .
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 3.2.3
Replace all occurrences of with .
Step 3.3
Differentiate.
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Multiply by .
Step 3.3.3
Differentiate using the Power Rule which states that is where .
Step 3.3.4
Multiply by .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Since there is no value of that makes the first derivative equal to , there are no local extrema.
No Local Extrema
Step 6
No Local Extrema
Step 7