Enter a problem...
Calculus Examples
Step 1
Rewrite the equation as .
Step 2
Subtract from both sides of the equation.
Step 3
Use the quadratic formula to find the solutions.
Step 4
Substitute the values , , and into the quadratic formula and solve for .
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Apply the distributive property.
Step 5.1.2
Multiply by .
Step 5.1.3
Multiply by .
Step 5.1.4
Add parentheses.
Step 5.1.5
Let . Substitute for all occurrences of .
Step 5.1.5.1
Rewrite as .
Step 5.1.5.2
Expand using the FOIL Method.
Step 5.1.5.2.1
Apply the distributive property.
Step 5.1.5.2.2
Apply the distributive property.
Step 5.1.5.2.3
Apply the distributive property.
Step 5.1.5.3
Simplify and combine like terms.
Step 5.1.5.3.1
Simplify each term.
Step 5.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 5.1.5.3.1.2
Multiply by by adding the exponents.
Step 5.1.5.3.1.2.1
Move .
Step 5.1.5.3.1.2.2
Multiply by .
Step 5.1.5.3.1.3
Multiply by .
Step 5.1.5.3.1.4
Multiply by .
Step 5.1.5.3.1.5
Multiply by .
Step 5.1.5.3.1.6
Multiply by .
Step 5.1.5.3.2
Subtract from .
Step 5.1.6
Factor out of .
Step 5.1.6.1
Factor out of .
Step 5.1.6.2
Factor out of .
Step 5.1.6.3
Factor out of .
Step 5.1.6.4
Factor out of .
Step 5.1.6.5
Factor out of .
Step 5.1.6.6
Factor out of .
Step 5.1.6.7
Factor out of .
Step 5.1.7
Replace all occurrences of with .
Step 5.1.8
Simplify.
Step 5.1.8.1
Simplify each term.
Step 5.1.8.1.1
Multiply by .
Step 5.1.8.1.2
Apply the distributive property.
Step 5.1.8.1.3
Simplify.
Step 5.1.8.1.3.1
Multiply by .
Step 5.1.8.1.3.2
Multiply .
Step 5.1.8.1.3.2.1
Multiply by .
Step 5.1.8.1.3.2.2
Multiply by .
Step 5.1.8.2
Subtract from .
Step 5.1.8.3
Add and .
Step 5.1.8.4
Subtract from .
Step 5.1.9
Rewrite as .
Step 5.1.10
Pull terms out from under the radical.
Step 5.2
Multiply by .
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Apply the distributive property.
Step 6.1.2
Multiply by .
Step 6.1.3
Multiply by .
Step 6.1.4
Add parentheses.
Step 6.1.5
Let . Substitute for all occurrences of .
Step 6.1.5.1
Rewrite as .
Step 6.1.5.2
Expand using the FOIL Method.
Step 6.1.5.2.1
Apply the distributive property.
Step 6.1.5.2.2
Apply the distributive property.
Step 6.1.5.2.3
Apply the distributive property.
Step 6.1.5.3
Simplify and combine like terms.
Step 6.1.5.3.1
Simplify each term.
Step 6.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 6.1.5.3.1.2
Multiply by by adding the exponents.
Step 6.1.5.3.1.2.1
Move .
Step 6.1.5.3.1.2.2
Multiply by .
Step 6.1.5.3.1.3
Multiply by .
Step 6.1.5.3.1.4
Multiply by .
Step 6.1.5.3.1.5
Multiply by .
Step 6.1.5.3.1.6
Multiply by .
Step 6.1.5.3.2
Subtract from .
Step 6.1.6
Factor out of .
Step 6.1.6.1
Factor out of .
Step 6.1.6.2
Factor out of .
Step 6.1.6.3
Factor out of .
Step 6.1.6.4
Factor out of .
Step 6.1.6.5
Factor out of .
Step 6.1.6.6
Factor out of .
Step 6.1.6.7
Factor out of .
Step 6.1.7
Replace all occurrences of with .
Step 6.1.8
Simplify.
Step 6.1.8.1
Simplify each term.
Step 6.1.8.1.1
Multiply by .
Step 6.1.8.1.2
Apply the distributive property.
Step 6.1.8.1.3
Simplify.
Step 6.1.8.1.3.1
Multiply by .
Step 6.1.8.1.3.2
Multiply .
Step 6.1.8.1.3.2.1
Multiply by .
Step 6.1.8.1.3.2.2
Multiply by .
Step 6.1.8.2
Subtract from .
Step 6.1.8.3
Add and .
Step 6.1.8.4
Subtract from .
Step 6.1.9
Rewrite as .
Step 6.1.10
Pull terms out from under the radical.
Step 6.2
Multiply by .
Step 6.3
Change the to .
Step 6.4
Cancel the common factor of and .
Step 6.4.1
Factor out of .
Step 6.4.2
Factor out of .
Step 6.4.3
Factor out of .
Step 6.4.4
Factor out of .
Step 6.4.5
Factor out of .
Step 6.4.6
Cancel the common factors.
Step 6.4.6.1
Factor out of .
Step 6.4.6.2
Cancel the common factor.
Step 6.4.6.3
Rewrite the expression.
Step 6.4.6.4
Divide by .
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Apply the distributive property.
Step 7.1.2
Multiply by .
Step 7.1.3
Multiply by .
Step 7.1.4
Add parentheses.
Step 7.1.5
Let . Substitute for all occurrences of .
Step 7.1.5.1
Rewrite as .
Step 7.1.5.2
Expand using the FOIL Method.
Step 7.1.5.2.1
Apply the distributive property.
Step 7.1.5.2.2
Apply the distributive property.
Step 7.1.5.2.3
Apply the distributive property.
Step 7.1.5.3
Simplify and combine like terms.
Step 7.1.5.3.1
Simplify each term.
Step 7.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 7.1.5.3.1.2
Multiply by by adding the exponents.
Step 7.1.5.3.1.2.1
Move .
Step 7.1.5.3.1.2.2
Multiply by .
Step 7.1.5.3.1.3
Multiply by .
Step 7.1.5.3.1.4
Multiply by .
Step 7.1.5.3.1.5
Multiply by .
Step 7.1.5.3.1.6
Multiply by .
Step 7.1.5.3.2
Subtract from .
Step 7.1.6
Factor out of .
Step 7.1.6.1
Factor out of .
Step 7.1.6.2
Factor out of .
Step 7.1.6.3
Factor out of .
Step 7.1.6.4
Factor out of .
Step 7.1.6.5
Factor out of .
Step 7.1.6.6
Factor out of .
Step 7.1.6.7
Factor out of .
Step 7.1.7
Replace all occurrences of with .
Step 7.1.8
Simplify.
Step 7.1.8.1
Simplify each term.
Step 7.1.8.1.1
Multiply by .
Step 7.1.8.1.2
Apply the distributive property.
Step 7.1.8.1.3
Simplify.
Step 7.1.8.1.3.1
Multiply by .
Step 7.1.8.1.3.2
Multiply .
Step 7.1.8.1.3.2.1
Multiply by .
Step 7.1.8.1.3.2.2
Multiply by .
Step 7.1.8.2
Subtract from .
Step 7.1.8.3
Add and .
Step 7.1.8.4
Subtract from .
Step 7.1.9
Rewrite as .
Step 7.1.10
Pull terms out from under the radical.
Step 7.2
Multiply by .
Step 7.3
Change the to .
Step 7.4
Cancel the common factor of and .
Step 7.4.1
Factor out of .
Step 7.4.2
Factor out of .
Step 7.4.3
Factor out of .
Step 7.4.4
Factor out of .
Step 7.4.5
Factor out of .
Step 7.4.6
Cancel the common factors.
Step 7.4.6.1
Factor out of .
Step 7.4.6.2
Cancel the common factor.
Step 7.4.6.3
Rewrite the expression.
Step 7.4.6.4
Divide by .
Step 8
The final answer is the combination of both solutions.
Step 9
Set the radicand in greater than or equal to to find where the expression is defined.
Step 10
Step 10.1
Convert the inequality to an equation.
Step 10.2
Use the quadratic formula to find the solutions.
Step 10.3
Substitute the values , , and into the quadratic formula and solve for .
Step 10.4
Simplify.
Step 10.4.1
Simplify the numerator.
Step 10.4.1.1
Raise to the power of .
Step 10.4.1.2
Multiply .
Step 10.4.1.2.1
Multiply by .
Step 10.4.1.2.2
Multiply by .
Step 10.4.1.3
Subtract from .
Step 10.4.2
Multiply by .
Step 10.5
Simplify the expression to solve for the portion of the .
Step 10.5.1
Simplify the numerator.
Step 10.5.1.1
Raise to the power of .
Step 10.5.1.2
Multiply .
Step 10.5.1.2.1
Multiply by .
Step 10.5.1.2.2
Multiply by .
Step 10.5.1.3
Subtract from .
Step 10.5.2
Multiply by .
Step 10.5.3
Change the to .
Step 10.6
Simplify the expression to solve for the portion of the .
Step 10.6.1
Simplify the numerator.
Step 10.6.1.1
Raise to the power of .
Step 10.6.1.2
Multiply .
Step 10.6.1.2.1
Multiply by .
Step 10.6.1.2.2
Multiply by .
Step 10.6.1.3
Subtract from .
Step 10.6.2
Multiply by .
Step 10.6.3
Change the to .
Step 10.7
Consolidate the solutions.
Step 10.8
Use each root to create test intervals.
Step 10.9
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 10.9.1
Test a value on the interval to see if it makes the inequality true.
Step 10.9.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 10.9.1.2
Replace with in the original inequality.
Step 10.9.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 10.9.2
Test a value on the interval to see if it makes the inequality true.
Step 10.9.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 10.9.2.2
Replace with in the original inequality.
Step 10.9.2.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 10.9.3
Test a value on the interval to see if it makes the inequality true.
Step 10.9.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 10.9.3.2
Replace with in the original inequality.
Step 10.9.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 10.9.4
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
Step 10.10
The solution consists of all of the true intervals.
or
or
Step 11
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 12
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Set-Builder Notation:
Step 13
Determine the domain and range.
Domain:
Range:
Step 14