Enter a problem...
Calculus Examples
Step 1
Split the single integral into multiple integrals.
Step 2
Since is constant with respect to , move out of the integral.
Step 3
Step 3.1
Negate the exponent of and move it out of the denominator.
Step 3.2
Simplify.
Step 3.2.1
Multiply the exponents in .
Step 3.2.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.2
Multiply by .
Step 3.2.2
Multiply by .
Step 4
Step 4.1
Let . Find .
Step 4.1.1
Differentiate .
Step 4.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3
Differentiate using the Power Rule which states that is where .
Step 4.1.4
Multiply by .
Step 4.2
Rewrite the problem using and .
Step 5
Step 5.1
Move the negative in front of the fraction.
Step 5.2
Combine and .
Step 6
Since is constant with respect to , move out of the integral.
Step 7
Multiply by .
Step 8
Since is constant with respect to , move out of the integral.
Step 9
Step 9.1
Combine and .
Step 9.2
Cancel the common factor of and .
Step 9.2.1
Factor out of .
Step 9.2.2
Cancel the common factors.
Step 9.2.2.1
Factor out of .
Step 9.2.2.2
Cancel the common factor.
Step 9.2.2.3
Rewrite the expression.
Step 9.2.2.4
Divide by .
Step 10
The integral of with respect to is .
Step 11
Since is constant with respect to , move out of the integral.
Step 12
Since is constant with respect to , move out of the integral.
Step 13
The integral of with respect to is .
Step 14
Simplify.
Step 15
Replace all occurrences of with .