Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.2.1
To apply the Chain Rule, set as .
Step 1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2.3
Replace all occurrences of with .
Step 1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Add and .
Step 1.2.7
Multiply by .
Step 1.2.8
Multiply by .
Step 1.3
Subtract from .
Step 2
Step 2.1
Rewrite as .
Step 2.2
Expand using the FOIL Method.
Step 2.2.1
Apply the distributive property.
Step 2.2.2
Apply the distributive property.
Step 2.2.3
Apply the distributive property.
Step 2.3
Simplify and combine like terms.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Multiply by .
Step 2.3.1.2
Move to the left of .
Step 2.3.1.3
Multiply by .
Step 2.3.2
Add and .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
By the Sum Rule, the derivative of with respect to is .
Step 2.6
Differentiate using the Power Rule which states that is where .
Step 2.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.8
Differentiate using the Power Rule which states that is where .
Step 2.9
Multiply by .
Step 2.10
Since is constant with respect to , the derivative of with respect to is .
Step 2.11
Add and .
Step 2.12
Simplify.
Step 2.12.1
Apply the distributive property.
Step 2.12.2
Combine terms.
Step 2.12.2.1
Multiply by .
Step 2.12.2.2
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate.
Step 4.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2
Evaluate .
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the chain rule, which states that is where and .
Step 4.1.2.2.1
To apply the Chain Rule, set as .
Step 4.1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.2.3
Replace all occurrences of with .
Step 4.1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2.4
Differentiate using the Power Rule which states that is where .
Step 4.1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.6
Add and .
Step 4.1.2.7
Multiply by .
Step 4.1.2.8
Multiply by .
Step 4.1.3
Subtract from .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Divide each term in by and simplify.
Step 5.2.1
Divide each term in by .
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of .
Step 5.2.2.1.1
Cancel the common factor.
Step 5.2.2.1.2
Divide by .
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Divide by .
Step 5.3
Set the equal to .
Step 5.4
Subtract from both sides of the equation.
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Multiply by .
Step 9.2
Subtract from .
Step 10
Step 10.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 10.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 10.2.1
Replace the variable with in the expression.
Step 10.2.2
Simplify the result.
Step 10.2.2.1
Add and .
Step 10.2.2.2
Raise to the power of .
Step 10.2.2.3
Multiply by .
Step 10.2.2.4
The final answer is .
Step 10.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 10.3.1
Replace the variable with in the expression.
Step 10.3.2
Simplify the result.
Step 10.3.2.1
Add and .
Step 10.3.2.2
Raise to the power of .
Step 10.3.2.3
Multiply by .
Step 10.3.2.4
The final answer is .
Step 10.4
Since the first derivative did not change signs around , this is not a local maximum or minimum.
Not a local maximum or minimum
Step 10.5
No local maxima or minima found for .
No local maxima or minima
No local maxima or minima
Step 11