Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate.
Step 4.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.1.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2
Evaluate .
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Multiply by .
Step 9.1.2
Rewrite the expression using the negative exponent rule .
Step 9.1.3
Combine and .
Step 9.1.4
Move the negative in front of the fraction.
Step 9.2
Subtract from .
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Simplify each term.
Step 11.2.1.1
Raise to the power of .
Step 11.2.1.2
Rewrite the expression using the negative exponent rule .
Step 11.2.1.3
Combine and .
Step 11.2.1.4
Move the negative in front of the fraction.
Step 11.2.2
Subtract from .
Step 11.2.3
The final answer is .
Step 12
These are the local extrema for .
is a local maxima
Step 13