Enter a problem...
Calculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
To write as a fraction with a common denominator, multiply by .
Step 1.2.4
Combine and .
Step 1.2.5
Combine the numerators over the common denominator.
Step 1.2.6
Simplify the numerator.
Step 1.2.6.1
Multiply by .
Step 1.2.6.2
Subtract from .
Step 1.2.7
Combine and .
Step 1.2.8
Combine and .
Step 1.2.9
Multiply by .
Step 1.2.10
Factor out of .
Step 1.2.11
Cancel the common factors.
Step 1.2.11.1
Factor out of .
Step 1.2.11.2
Cancel the common factor.
Step 1.2.11.3
Rewrite the expression.
Step 1.2.11.4
Divide by .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
To write as a fraction with a common denominator, multiply by .
Step 1.3.4
Combine and .
Step 1.3.5
Combine the numerators over the common denominator.
Step 1.3.6
Simplify the numerator.
Step 1.3.6.1
Multiply by .
Step 1.3.6.2
Subtract from .
Step 1.3.7
Move the negative in front of the fraction.
Step 1.3.8
Combine and .
Step 1.3.9
Combine and .
Step 1.3.10
Multiply by .
Step 1.3.11
Move to the denominator using the negative exponent rule .
Step 1.3.12
Factor out of .
Step 1.3.13
Cancel the common factors.
Step 1.3.13.1
Factor out of .
Step 1.3.13.2
Cancel the common factor.
Step 1.3.13.3
Rewrite the expression.
Step 1.3.14
Move the negative in front of the fraction.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
To write as a fraction with a common denominator, multiply by .
Step 2.2.4
Combine and .
Step 2.2.5
Combine the numerators over the common denominator.
Step 2.2.6
Simplify the numerator.
Step 2.2.6.1
Multiply by .
Step 2.2.6.2
Subtract from .
Step 2.2.7
Move the negative in front of the fraction.
Step 2.2.8
Combine and .
Step 2.2.9
Combine and .
Step 2.2.10
Multiply by .
Step 2.2.11
Move to the denominator using the negative exponent rule .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Rewrite as .
Step 2.3.3
Differentiate using the chain rule, which states that is where and .
Step 2.3.3.1
To apply the Chain Rule, set as .
Step 2.3.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3.3
Replace all occurrences of with .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Multiply the exponents in .
Step 2.3.5.1
Apply the power rule and multiply exponents, .
Step 2.3.5.2
Combine and .
Step 2.3.5.3
Move the negative in front of the fraction.
Step 2.3.6
To write as a fraction with a common denominator, multiply by .
Step 2.3.7
Combine and .
Step 2.3.8
Combine the numerators over the common denominator.
Step 2.3.9
Simplify the numerator.
Step 2.3.9.1
Multiply by .
Step 2.3.9.2
Subtract from .
Step 2.3.10
Move the negative in front of the fraction.
Step 2.3.11
Combine and .
Step 2.3.12
Combine and .
Step 2.3.13
Multiply by by adding the exponents.
Step 2.3.13.1
Use the power rule to combine exponents.
Step 2.3.13.2
Combine the numerators over the common denominator.
Step 2.3.13.3
Subtract from .
Step 2.3.13.4
Move the negative in front of the fraction.
Step 2.3.14
Move to the denominator using the negative exponent rule .
Step 2.3.15
Multiply by .
Step 2.3.16
Combine and .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2
Evaluate .
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.4
Combine and .
Step 4.1.2.5
Combine the numerators over the common denominator.
Step 4.1.2.6
Simplify the numerator.
Step 4.1.2.6.1
Multiply by .
Step 4.1.2.6.2
Subtract from .
Step 4.1.2.7
Combine and .
Step 4.1.2.8
Combine and .
Step 4.1.2.9
Multiply by .
Step 4.1.2.10
Factor out of .
Step 4.1.2.11
Cancel the common factors.
Step 4.1.2.11.1
Factor out of .
Step 4.1.2.11.2
Cancel the common factor.
Step 4.1.2.11.3
Rewrite the expression.
Step 4.1.2.11.4
Divide by .
Step 4.1.3
Evaluate .
Step 4.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3.2
Differentiate using the Power Rule which states that is where .
Step 4.1.3.3
To write as a fraction with a common denominator, multiply by .
Step 4.1.3.4
Combine and .
Step 4.1.3.5
Combine the numerators over the common denominator.
Step 4.1.3.6
Simplify the numerator.
Step 4.1.3.6.1
Multiply by .
Step 4.1.3.6.2
Subtract from .
Step 4.1.3.7
Move the negative in front of the fraction.
Step 4.1.3.8
Combine and .
Step 4.1.3.9
Combine and .
Step 4.1.3.10
Multiply by .
Step 4.1.3.11
Move to the denominator using the negative exponent rule .
Step 4.1.3.12
Factor out of .
Step 4.1.3.13
Cancel the common factors.
Step 4.1.3.13.1
Factor out of .
Step 4.1.3.13.2
Cancel the common factor.
Step 4.1.3.13.3
Rewrite the expression.
Step 4.1.3.14
Move the negative in front of the fraction.
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Find the LCD of the terms in the equation.
Step 5.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 5.2.2
The LCM of one and any expression is the expression.
Step 5.3
Multiply each term in by to eliminate the fractions.
Step 5.3.1
Multiply each term in by .
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Simplify each term.
Step 5.3.2.1.1
Multiply by by adding the exponents.
Step 5.3.2.1.1.1
Move .
Step 5.3.2.1.1.2
Use the power rule to combine exponents.
Step 5.3.2.1.1.3
Combine the numerators over the common denominator.
Step 5.3.2.1.1.4
Add and .
Step 5.3.2.1.1.5
Divide by .
Step 5.3.2.1.2
Simplify .
Step 5.3.2.1.3
Cancel the common factor of .
Step 5.3.2.1.3.1
Move the leading negative in into the numerator.
Step 5.3.2.1.3.2
Cancel the common factor.
Step 5.3.2.1.3.3
Rewrite the expression.
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Multiply by .
Step 5.4
Solve the equation.
Step 5.4.1
Add to both sides of the equation.
Step 5.4.2
Divide each term in by and simplify.
Step 5.4.2.1
Divide each term in by .
Step 5.4.2.2
Simplify the left side.
Step 5.4.2.2.1
Cancel the common factor of .
Step 5.4.2.2.1.1
Cancel the common factor.
Step 5.4.2.2.1.2
Divide by .
Step 5.4.2.3
Simplify the right side.
Step 5.4.2.3.1
Divide by .
Step 6
Step 6.1
Convert expressions with fractional exponents to radicals.
Step 6.1.1
Apply the rule to rewrite the exponentiation as a radical.
Step 6.1.2
Apply the rule to rewrite the exponentiation as a radical.
Step 6.1.3
Anything raised to is the base itself.
Step 6.2
Set the denominator in equal to to find where the expression is undefined.
Step 6.3
Solve for .
Step 6.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 6.3.2
Simplify each side of the equation.
Step 6.3.2.1
Use to rewrite as .
Step 6.3.2.2
Simplify the left side.
Step 6.3.2.2.1
Simplify .
Step 6.3.2.2.1.1
Multiply the exponents in .
Step 6.3.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 6.3.2.2.1.1.2
Cancel the common factor of .
Step 6.3.2.2.1.1.2.1
Cancel the common factor.
Step 6.3.2.2.1.1.2.2
Rewrite the expression.
Step 6.3.2.2.1.2
Simplify.
Step 6.3.2.3
Simplify the right side.
Step 6.3.2.3.1
Raising to any positive power yields .
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Remove parentheses.
Step 9.2
To write as a fraction with a common denominator, multiply by .
Step 9.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 9.3.1
Multiply by .
Step 9.3.2
Multiply by by adding the exponents.
Step 9.3.2.1
Move .
Step 9.3.2.2
Use the power rule to combine exponents.
Step 9.3.2.3
Combine the numerators over the common denominator.
Step 9.3.2.4
Add and .
Step 9.4
Combine the numerators over the common denominator.
Step 9.5
Simplify the numerator.
Step 9.5.1
Divide by .
Step 9.5.2
Raise to the power of .
Step 9.5.3
Multiply by .
Step 9.5.4
Add and .
Step 9.6
Factor out of .
Step 9.7
Cancel the common factors.
Step 9.7.1
Factor out of .
Step 9.7.2
Cancel the common factor.
Step 9.7.3
Rewrite the expression.
Step 10
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Remove parentheses.
Step 11.2.2
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Step 13.1
Simplify the expression.
Step 13.1.1
Rewrite as .
Step 13.1.2
Apply the power rule and multiply exponents, .
Step 13.2
Cancel the common factor of .
Step 13.2.1
Cancel the common factor.
Step 13.2.2
Rewrite the expression.
Step 13.3
Evaluate the exponent.
Step 13.4
Multiply by .
Step 13.5
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Step 14
Step 14.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 14.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 14.2.1
Replace the variable with in the expression.
Step 14.2.2
The final answer is .
Step 14.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 14.3.1
Replace the variable with in the expression.
Step 14.3.2
Simplify the result.
Step 14.3.2.1
Simplify each term.
Step 14.3.2.1.1
One to any power is one.
Step 14.3.2.1.2
Multiply by .
Step 14.3.2.1.3
One to any power is one.
Step 14.3.2.1.4
Divide by .
Step 14.3.2.1.5
Multiply by .
Step 14.3.2.2
Subtract from .
Step 14.3.2.3
The final answer is .
Step 14.4
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 14.4.1
Replace the variable with in the expression.
Step 14.4.2
Simplify the result.
Step 14.4.2.1
Remove parentheses.
Step 14.4.2.2
The final answer is .
Step 14.5
Since the first derivative changed signs from positive to negative around , then is a local maximum.
is a local maximum
Step 14.6
Since the first derivative changed signs from negative to positive around , then is a local minimum.
is a local minimum
Step 14.7
These are the local extrema for .
is a local maximum
is a local minimum
is a local maximum
is a local minimum
Step 15