Enter a problem...
Calculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the chain rule, which states that is where and .
Step 1.3.2.1
To apply the Chain Rule, set as .
Step 1.3.2.2
The derivative of with respect to is .
Step 1.3.2.3
Replace all occurrences of with .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Multiply by .
Step 1.3.6
Move to the left of .
Step 1.3.7
Multiply by .
Step 2
Step 2.1
Differentiate.
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.2.1
To apply the Chain Rule, set as .
Step 2.2.2.2
The derivative of with respect to is .
Step 2.2.2.3
Replace all occurrences of with .
Step 2.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.2.5
Multiply by .
Step 2.2.6
Multiply by .
Step 2.2.7
Multiply by .
Step 2.3
Add and .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Subtract from both sides of the equation.
Step 5
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of .
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Divide by .
Step 5.3
Simplify the right side.
Step 5.3.1
Divide by .
Step 6
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 7
Step 7.1
The exact value of is .
Step 8
Step 8.1
Divide each term in by .
Step 8.2
Simplify the left side.
Step 8.2.1
Cancel the common factor of .
Step 8.2.1.1
Cancel the common factor.
Step 8.2.1.2
Divide by .
Step 8.3
Simplify the right side.
Step 8.3.1
Divide by .
Step 9
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 10
Step 10.1
Simplify.
Step 10.1.1
Multiply by .
Step 10.1.2
Add and .
Step 10.2
Divide each term in by and simplify.
Step 10.2.1
Divide each term in by .
Step 10.2.2
Simplify the left side.
Step 10.2.2.1
Cancel the common factor of .
Step 10.2.2.1.1
Cancel the common factor.
Step 10.2.2.1.2
Divide by .
Step 10.2.3
Simplify the right side.
Step 10.2.3.1
Cancel the common factor of .
Step 10.2.3.1.1
Cancel the common factor.
Step 10.2.3.1.2
Divide by .
Step 11
The solution to the equation .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Step 13.1
Multiply by .
Step 13.2
The exact value of is .
Step 13.3
Multiply by .
Step 14
Step 14.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 14.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 14.2.1
Replace the variable with in the expression.
Step 14.2.2
Simplify the result.
Step 14.2.2.1
Simplify each term.
Step 14.2.2.1.1
Multiply by .
Step 14.2.2.1.2
Evaluate .
Step 14.2.2.1.3
Multiply by .
Step 14.2.2.2
Add and .
Step 14.2.2.3
The final answer is .
Step 14.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 14.3.1
Replace the variable with in the expression.
Step 14.3.2
Simplify the result.
Step 14.3.2.1
Simplify each term.
Step 14.3.2.1.1
Multiply by .
Step 14.3.2.1.2
Evaluate .
Step 14.3.2.1.3
Multiply by .
Step 14.3.2.2
Add and .
Step 14.3.2.3
The final answer is .
Step 14.4
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Step 14.4.1
Replace the variable with in the expression.
Step 14.4.2
Simplify the result.
Step 14.4.2.1
Simplify each term.
Step 14.4.2.1.1
Multiply by .
Step 14.4.2.1.2
Evaluate .
Step 14.4.2.1.3
Multiply by .
Step 14.4.2.2
Subtract from .
Step 14.4.2.3
The final answer is .
Step 14.5
Since the first derivative did not change signs around , this is not a local maximum or minimum.
Not a local maximum or minimum
Step 14.6
No local maxima or minima found for .
No local maxima or minima
No local maxima or minima
Step 15