Calculus Examples

Evaluate the Limit limit as x approaches -3 of (x^2+3x)/( square root of x^2+6x+9)
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.2.2
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.1.2.3
Move the term outside of the limit because it is constant with respect to .
Step 1.1.2.4
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 1.1.2.4.1
Evaluate the limit of by plugging in for .
Step 1.1.2.4.2
Evaluate the limit of by plugging in for .
Step 1.1.2.5
Simplify the answer.
Tap for more steps...
Step 1.1.2.5.1
Simplify each term.
Tap for more steps...
Step 1.1.2.5.1.1
Raise to the power of .
Step 1.1.2.5.1.2
Multiply by .
Step 1.1.2.5.2
Subtract from .
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Move the limit under the radical sign.
Step 1.1.3.2
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.3.3
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.1.3.4
Move the term outside of the limit because it is constant with respect to .
Step 1.1.3.5
Evaluate the limit of which is constant as approaches .
Step 1.1.3.6
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 1.1.3.6.1
Evaluate the limit of by plugging in for .
Step 1.1.3.6.2
Evaluate the limit of by plugging in for .
Step 1.1.3.7
Simplify the answer.
Tap for more steps...
Step 1.1.3.7.1
Raise to the power of .
Step 1.1.3.7.2
Multiply by .
Step 1.1.3.7.3
Subtract from .
Step 1.1.3.7.4
Add and .
Step 1.1.3.7.5
Rewrite as .
Step 1.1.3.7.6
Pull terms out from under the radical, assuming positive real numbers.
Step 1.1.3.7.7
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.3.8
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
Step 1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3
Differentiate using the Power Rule which states that is where .
Step 1.3.4
Evaluate .
Tap for more steps...
Step 1.3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4.2
Differentiate using the Power Rule which states that is where .
Step 1.3.4.3
Multiply by .
Step 1.3.5
Rewrite as .
Tap for more steps...
Step 1.3.5.1
Factor using the perfect square rule.
Tap for more steps...
Step 1.3.5.1.1
Rewrite as .
Step 1.3.5.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.3.5.1.3
Rewrite the polynomial.
Step 1.3.5.1.4
Factor using the perfect square trinomial rule , where and .
Step 1.3.5.2
Pull terms out from under the radical, assuming positive real numbers.
Step 1.3.6
By the Sum Rule, the derivative of with respect to is .
Step 1.3.7
Differentiate using the Power Rule which states that is where .
Step 1.3.8
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.9
Add and .
Step 1.4
Divide by .
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.2
Move the term outside of the limit because it is constant with respect to .
Step 2.3
Evaluate the limit of which is constant as approaches .
Step 3
Evaluate the limit of by plugging in for .
Step 4
Simplify the answer.
Tap for more steps...
Step 4.1
Multiply by .
Step 4.2
Add and .