Calculus Examples

Evaluate the Summation sum from k=6 to 31 of (3k-6)/4
Step 1
Simplify the summation.
Tap for more steps...
Step 1.1
Factor out of .
Tap for more steps...
Step 1.1.1
Factor out of .
Step 1.1.2
Factor out of .
Step 1.1.3
Factor out of .
Step 1.2
Rewrite the summation.
Step 2
Split the summation to make the starting value of equal to .
Step 3
Evaluate .
Tap for more steps...
Step 3.1
Split the summation into smaller summations that fit the summation rules.
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Factor out of the summation.
Step 3.2.2
The formula for the summation of a polynomial with degree is:
Step 3.2.3
Substitute the values into the formula and make sure to multiply by the front term.
Step 3.2.4
Simplify.
Tap for more steps...
Step 3.2.4.1
Simplify the expression.
Tap for more steps...
Step 3.2.4.1.1
Add and .
Step 3.2.4.1.2
Multiply by .
Step 3.2.4.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.4.2.1
Factor out of .
Step 3.2.4.2.2
Cancel the common factor.
Step 3.2.4.2.3
Rewrite the expression.
Step 3.2.4.3
Combine and .
Step 3.2.4.4
Simplify the expression.
Tap for more steps...
Step 3.2.4.4.1
Multiply by .
Step 3.2.4.4.2
Divide by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
The formula for the summation of a constant is:
Step 3.3.2
Substitute the values into the formula.
Step 3.3.3
Simplify.
Tap for more steps...
Step 3.3.3.1
Multiply .
Tap for more steps...
Step 3.3.3.1.1
Multiply by .
Step 3.3.3.1.2
Combine and .
Step 3.3.3.1.3
Multiply by .
Step 3.3.3.2
Move the negative in front of the fraction.
Step 3.4
Add the results of the summations.
Step 3.5
Simplify.
Tap for more steps...
Step 3.5.1
To write as a fraction with a common denominator, multiply by .
Step 3.5.2
Combine and .
Step 3.5.3
Combine the numerators over the common denominator.
Step 3.5.4
Simplify the numerator.
Tap for more steps...
Step 3.5.4.1
Multiply by .
Step 3.5.4.2
Subtract from .
Step 4
Evaluate .
Tap for more steps...
Step 4.1
Expand the series for each value of .
Step 4.2
Simplify the expanded form.
Step 5
Replace the summations with the values found.
Step 6
Simplify.
Tap for more steps...
Step 6.1
To write as a fraction with a common denominator, multiply by .
Step 6.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 6.2.1
Multiply by .
Step 6.2.2
Multiply by .
Step 6.3
Combine the numerators over the common denominator.
Step 6.4
Simplify the numerator.
Tap for more steps...
Step 6.4.1
Multiply by .
Step 6.4.2
Subtract from .
Step 7
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form: