Enter a problem...
Calculus Examples
Step 1
Split the single integral into multiple integrals.
Step 2
Since is constant with respect to , move out of the integral.
Step 3
The integral of with respect to is .
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Step 5.1
Let . Find .
Step 5.1.1
Differentiate .
Step 5.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.3
Differentiate using the Power Rule which states that is where .
Step 5.1.4
Multiply by .
Step 5.2
Rewrite the problem using and .
Step 6
Step 6.1
Move the negative in front of the fraction.
Step 6.2
Combine and .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Multiply by .
Step 9
Since is constant with respect to , move out of the integral.
Step 10
Combine and .
Step 11
The integral of with respect to is .
Step 12
Simplify.
Step 13
Replace all occurrences of with .