Calculus Examples

Find the 2nd Derivative f(x)=e^(9x)+7cos(x)sin(x)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.1.1
To apply the Chain Rule, set as .
Step 1.2.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.2.1.3
Replace all occurrences of with .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Differentiate using the Power Rule which states that is where .
Step 1.2.4
Multiply by .
Step 1.2.5
Move to the left of .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Product Rule which states that is where and .
Step 1.3.3
The derivative of with respect to is .
Step 1.3.4
The derivative of with respect to is .
Step 1.3.5
Raise to the power of .
Step 1.3.6
Raise to the power of .
Step 1.3.7
Use the power rule to combine exponents.
Step 1.3.8
Add and .
Step 1.3.9
Raise to the power of .
Step 1.3.10
Raise to the power of .
Step 1.3.11
Use the power rule to combine exponents.
Step 1.3.12
Add and .
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Apply the distributive property.
Step 1.4.2
Multiply by .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.2.1
To apply the Chain Rule, set as .
Step 2.2.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.2.3
Replace all occurrences of with .
Step 2.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.2.5
Multiply by .
Step 2.2.6
Move to the left of .
Step 2.2.7
Multiply by .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.2.1
To apply the Chain Rule, set as .
Step 2.3.2.2
Differentiate using the Power Rule which states that is where .
Step 2.3.2.3
Replace all occurrences of with .
Step 2.3.3
The derivative of with respect to is .
Step 2.3.4
Multiply by .
Step 2.3.5
Multiply by .
Step 2.4
Evaluate .
Tap for more steps...
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.4.2.1
To apply the Chain Rule, set as .
Step 2.4.2.2
Differentiate using the Power Rule which states that is where .
Step 2.4.2.3
Replace all occurrences of with .
Step 2.4.3
The derivative of with respect to is .
Step 2.4.4
Multiply by .
Step 2.5
Simplify.
Tap for more steps...
Step 2.5.1
Combine terms.
Tap for more steps...
Step 2.5.1.1
Reorder the factors of .
Step 2.5.1.2
Subtract from .
Step 2.5.2
Reorder terms.
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Product Rule which states that is where and .
Step 3.2.3
The derivative of with respect to is .
Step 3.2.4
The derivative of with respect to is .
Step 3.2.5
Raise to the power of .
Step 3.2.6
Raise to the power of .
Step 3.2.7
Use the power rule to combine exponents.
Step 3.2.8
Add and .
Step 3.2.9
Raise to the power of .
Step 3.2.10
Raise to the power of .
Step 3.2.11
Use the power rule to combine exponents.
Step 3.2.12
Add and .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.2.1
To apply the Chain Rule, set as .
Step 3.3.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 3.3.2.3
Replace all occurrences of with .
Step 3.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.4
Differentiate using the Power Rule which states that is where .
Step 3.3.5
Multiply by .
Step 3.3.6
Move to the left of .
Step 3.3.7
Multiply by .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Apply the distributive property.
Step 3.4.2
Multiply by .
Step 3.4.3
Reorder terms.
Step 4
Find the fourth derivative.
Tap for more steps...
Step 4.1
By the Sum Rule, the derivative of with respect to is .
Step 4.2
Evaluate .
Tap for more steps...
Step 4.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.2.2.1
To apply the Chain Rule, set as .
Step 4.2.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.2.2.3
Replace all occurrences of with .
Step 4.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.4
Differentiate using the Power Rule which states that is where .
Step 4.2.5
Multiply by .
Step 4.2.6
Move to the left of .
Step 4.2.7
Multiply by .
Step 4.3
Evaluate .
Tap for more steps...
Step 4.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.3.2.1
To apply the Chain Rule, set as .
Step 4.3.2.2
Differentiate using the Power Rule which states that is where .
Step 4.3.2.3
Replace all occurrences of with .
Step 4.3.3
The derivative of with respect to is .
Step 4.3.4
Multiply by .
Step 4.3.5
Multiply by .
Step 4.4
Evaluate .
Tap for more steps...
Step 4.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.4.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.4.2.1
To apply the Chain Rule, set as .
Step 4.4.2.2
Differentiate using the Power Rule which states that is where .
Step 4.4.2.3
Replace all occurrences of with .
Step 4.4.3
The derivative of with respect to is .
Step 4.4.4
Multiply by .
Step 4.5
Simplify.
Tap for more steps...
Step 4.5.1
Combine terms.
Tap for more steps...
Step 4.5.1.1
Reorder the factors of .
Step 4.5.1.2
Add and .
Step 4.5.2
Reorder terms.
Step 5
The fourth derivative of with respect to is .