Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the Product Rule which states that is where and .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
The derivative of with respect to is .
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Multiply by .
Step 1.3.3
Differentiate using the Power Rule which states that is where .
Step 1.3.4
Multiply by .
Step 1.3.5
Differentiate using the Power Rule which states that is where .
Step 1.3.6
Simplify the expression.
Step 1.3.6.1
Multiply by .
Step 1.3.6.2
Reorder terms.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Product Rule which states that is where and .
Step 2.2.3
Differentiate using the chain rule, which states that is where and .
Step 2.2.3.1
To apply the Chain Rule, set as .
Step 2.2.3.2
The derivative of with respect to is .
Step 2.2.3.3
Replace all occurrences of with .
Step 2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Differentiate using the Power Rule which states that is where .
Step 2.2.7
Multiply by .
Step 2.2.8
Move to the left of .
Step 2.2.9
Multiply by .
Step 2.3
Evaluate .
Step 2.3.1
Differentiate using the chain rule, which states that is where and .
Step 2.3.1.1
To apply the Chain Rule, set as .
Step 2.3.1.2
The derivative of with respect to is .
Step 2.3.1.3
Replace all occurrences of with .
Step 2.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.3.4
Multiply by .
Step 2.3.5
Multiply by .
Step 2.4
Simplify.
Step 2.4.1
Apply the distributive property.
Step 2.4.2
Combine terms.
Step 2.4.2.1
Multiply by .
Step 2.4.2.2
Subtract from .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Product Rule which states that is where and .
Step 3.2.3
Differentiate using the chain rule, which states that is where and .
Step 3.2.3.1
To apply the Chain Rule, set as .
Step 3.2.3.2
The derivative of with respect to is .
Step 3.2.3.3
Replace all occurrences of with .
Step 3.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.5
Differentiate using the Power Rule which states that is where .
Step 3.2.6
Differentiate using the Power Rule which states that is where .
Step 3.2.7
Multiply by .
Step 3.2.8
Multiply by .
Step 3.2.9
Multiply by .
Step 3.3
Evaluate .
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the chain rule, which states that is where and .
Step 3.3.2.1
To apply the Chain Rule, set as .
Step 3.3.2.2
The derivative of with respect to is .
Step 3.3.2.3
Replace all occurrences of with .
Step 3.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.4
Differentiate using the Power Rule which states that is where .
Step 3.3.5
Multiply by .
Step 3.3.6
Move to the left of .
Step 3.3.7
Multiply by .
Step 3.4
Simplify.
Step 3.4.1
Apply the distributive property.
Step 3.4.2
Combine terms.
Step 3.4.2.1
Multiply by .
Step 3.4.2.2
Subtract from .
Step 4
Step 4.1
By the Sum Rule, the derivative of with respect to is .
Step 4.2
Evaluate .
Step 4.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2
Differentiate using the Product Rule which states that is where and .
Step 4.2.3
Differentiate using the chain rule, which states that is where and .
Step 4.2.3.1
To apply the Chain Rule, set as .
Step 4.2.3.2
The derivative of with respect to is .
Step 4.2.3.3
Replace all occurrences of with .
Step 4.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.5
Differentiate using the Power Rule which states that is where .
Step 4.2.6
Differentiate using the Power Rule which states that is where .
Step 4.2.7
Multiply by .
Step 4.2.8
Move to the left of .
Step 4.2.9
Multiply by .
Step 4.3
Evaluate .
Step 4.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2
Differentiate using the chain rule, which states that is where and .
Step 4.3.2.1
To apply the Chain Rule, set as .
Step 4.3.2.2
The derivative of with respect to is .
Step 4.3.2.3
Replace all occurrences of with .
Step 4.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.4
Differentiate using the Power Rule which states that is where .
Step 4.3.5
Multiply by .
Step 4.3.6
Multiply by .
Step 4.3.7
Multiply by .
Step 4.4
Simplify.
Step 4.4.1
Apply the distributive property.
Step 4.4.2
Combine terms.
Step 4.4.2.1
Multiply by .
Step 4.4.2.2
Add and .