Enter a problem...
Calculus Examples
Step 1
Step 1.1
Decompose the fraction and multiply through by the common denominator.
Step 1.1.1
Factor the fraction.
Step 1.1.1.1
Factor out of .
Step 1.1.1.1.1
Factor out of .
Step 1.1.1.1.2
Factor out of .
Step 1.1.1.1.3
Factor out of .
Step 1.1.1.1.4
Factor out of .
Step 1.1.1.1.5
Factor out of .
Step 1.1.1.2
Factor out of .
Step 1.1.1.2.1
Factor out of .
Step 1.1.1.2.2
Factor out of .
Step 1.1.1.2.3
Factor out of .
Step 1.1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.1.3
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.1.4
Cancel the common factor of .
Step 1.1.4.1
Cancel the common factor.
Step 1.1.4.2
Rewrite the expression.
Step 1.1.5
Cancel the common factor of .
Step 1.1.5.1
Cancel the common factor.
Step 1.1.5.2
Divide by .
Step 1.1.6
Apply the distributive property.
Step 1.1.7
Simplify.
Step 1.1.7.1
Multiply by .
Step 1.1.7.2
Multiply by .
Step 1.1.8
Simplify each term.
Step 1.1.8.1
Cancel the common factor of .
Step 1.1.8.1.1
Cancel the common factor.
Step 1.1.8.1.2
Divide by .
Step 1.1.8.2
Apply the distributive property.
Step 1.1.8.3
Move to the left of .
Step 1.1.8.4
Cancel the common factor of and .
Step 1.1.8.4.1
Factor out of .
Step 1.1.8.4.2
Cancel the common factors.
Step 1.1.8.4.2.1
Raise to the power of .
Step 1.1.8.4.2.2
Factor out of .
Step 1.1.8.4.2.3
Cancel the common factor.
Step 1.1.8.4.2.4
Rewrite the expression.
Step 1.1.8.4.2.5
Divide by .
Step 1.1.8.5
Apply the distributive property.
Step 1.1.8.6
Multiply by .
Step 1.1.8.7
Move to the left of .
Step 1.1.8.8
Apply the distributive property.
Step 1.1.8.9
Rewrite using the commutative property of multiplication.
Step 1.1.8.10
Cancel the common factor of .
Step 1.1.8.10.1
Cancel the common factor.
Step 1.1.8.10.2
Divide by .
Step 1.1.9
Simplify the expression.
Step 1.1.9.1
Move .
Step 1.1.9.2
Move .
Step 1.1.9.3
Move .
Step 1.1.9.4
Move .
Step 1.2
Create equations for the partial fraction variables and use them to set up a system of equations.
Step 1.2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 1.2.2
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 1.2.3
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 1.2.4
Set up the system of equations to find the coefficients of the partial fractions.
Step 1.3
Solve the system of equations.
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Divide each term in by and simplify.
Step 1.3.1.2.1
Divide each term in by .
Step 1.3.1.2.2
Simplify the left side.
Step 1.3.1.2.2.1
Cancel the common factor of .
Step 1.3.1.2.2.1.1
Cancel the common factor.
Step 1.3.1.2.2.1.2
Divide by .
Step 1.3.1.2.3
Simplify the right side.
Step 1.3.1.2.3.1
Divide by .
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify the right side.
Step 1.3.2.2.1
Remove parentheses.
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.3.2.1
Add to both sides of the equation.
Step 1.3.3.2.2
Add and .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Dividing two negative values results in a positive value.
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Remove parentheses.
Step 1.3.5
Solve for in .
Step 1.3.5.1
Rewrite the equation as .
Step 1.3.5.2
Move all terms not containing to the right side of the equation.
Step 1.3.5.2.1
Subtract from both sides of the equation.
Step 1.3.5.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.3.5.2.3
Combine and .
Step 1.3.5.2.4
Combine the numerators over the common denominator.
Step 1.3.5.2.5
Simplify the numerator.
Step 1.3.5.2.5.1
Multiply by .
Step 1.3.5.2.5.2
Subtract from .
Step 1.3.5.2.6
Move the negative in front of the fraction.
Step 1.3.6
Solve the system of equations.
Step 1.3.7
List all of the solutions.
Step 1.4
Replace each of the partial fraction coefficients in with the values found for , , and .
Step 1.5
Simplify.
Step 1.5.1
Move the negative in front of the fraction.
Step 1.5.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.5.3
Multiply by .
Step 1.5.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.5.5
Multiply by .
Step 1.5.6
Move to the left of .
Step 2
Split the single integral into multiple integrals.
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Step 4.1
Move out of the denominator by raising it to the power.
Step 4.2
Multiply the exponents in .
Step 4.2.1
Apply the power rule and multiply exponents, .
Step 4.2.2
Multiply by .
Step 5
By the Power Rule, the integral of with respect to is .
Step 6
Since is constant with respect to , move out of the integral.
Step 7
The integral of with respect to is .
Step 8
Since is constant with respect to , move out of the integral.
Step 9
Since is constant with respect to , move out of the integral.
Step 10
Step 10.1
Let . Find .
Step 10.1.1
Differentiate .
Step 10.1.2
By the Sum Rule, the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.5
Add and .
Step 10.2
Rewrite the problem using and .
Step 11
The integral of with respect to is .
Step 12
Simplify.
Step 13
Replace all occurrences of with .
Step 14
Reorder terms.