Enter a problem...
Calculus Examples
Step 1
Reorder and .
Step 2
Step 2.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
| + | + | + | + | + |
Step 2.2
Divide the highest order term in the dividend by the highest order term in divisor .
| + | + | + | + | + |
Step 2.3
Multiply the new quotient term by the divisor.
| + | + | + | + | + | |||||||||
| + | + |
Step 2.4
The expression needs to be subtracted from the dividend, so change all the signs in
| + | + | + | + | + | |||||||||
| - | - |
Step 2.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - |
Step 2.6
Pull the next terms from the original dividend down into the current dividend.
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + |
Step 2.7
Divide the highest order term in the dividend by the highest order term in divisor .
| - | |||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + |
Step 2.8
Multiply the new quotient term by the divisor.
| - | |||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| - | - |
Step 2.9
The expression needs to be subtracted from the dividend, so change all the signs in
| - | |||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + |
Step 2.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | |||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + |
Step 2.11
Pull the next terms from the original dividend down into the current dividend.
| - | |||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + |
Step 2.12
Divide the highest order term in the dividend by the highest order term in divisor .
| - | + | ||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + |
Step 2.13
Multiply the new quotient term by the divisor.
| - | + | ||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| + | + |
Step 2.14
The expression needs to be subtracted from the dividend, so change all the signs in
| - | + | ||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| - | - |
Step 2.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | + | ||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| - | - | ||||||||||||
| - |
Step 2.16
Pull the next terms from the original dividend down into the current dividend.
| - | + | ||||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| - | - | ||||||||||||
| - | + |
Step 2.17
Divide the highest order term in the dividend by the highest order term in divisor .
| - | + | - | |||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| - | - | ||||||||||||
| - | + |
Step 2.18
Multiply the new quotient term by the divisor.
| - | + | - | |||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| - | - |
Step 2.19
The expression needs to be subtracted from the dividend, so change all the signs in
| - | + | - | |||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + |
Step 2.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | + | - | |||||||||||
| + | + | + | + | + | |||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + | + | ||||||||||||
| - | - | ||||||||||||
| - | + | ||||||||||||
| + | + | ||||||||||||
| + |
Step 2.21
The final answer is the quotient plus the remainder over the divisor.
Step 3
Split the single integral into multiple integrals.
Step 4
By the Power Rule, the integral of with respect to is .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
By the Power Rule, the integral of with respect to is .
Step 7
By the Power Rule, the integral of with respect to is .
Step 8
Combine and .
Step 9
Apply the constant rule.
Step 10
Step 10.1
Let . Find .
Step 10.1.1
Differentiate .
Step 10.1.2
By the Sum Rule, the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.5
Add and .
Step 10.2
Rewrite the problem using and .
Step 11
The integral of with respect to is .
Step 12
Simplify.
Step 13
Replace all occurrences of with .