Enter a problem...
Calculus Examples
at
Step 1
Step 1.1
Substitute in for .
Step 1.2
Simplify .
Step 1.2.1
Simplify each term.
Step 1.2.1.1
Raise to the power of .
Step 1.2.1.2
Move the negative in front of the fraction.
Step 1.2.1.3
Raise to the power of .
Step 1.2.1.4
Divide by .
Step 1.2.1.5
Multiply by .
Step 1.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.3
Combine and .
Step 1.2.4
Combine the numerators over the common denominator.
Step 1.2.5
Simplify the numerator.
Step 1.2.5.1
Multiply by .
Step 1.2.5.2
Add and .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Combine and .
Step 2.2.4
Combine and .
Step 2.2.5
Cancel the common factor of .
Step 2.2.5.1
Cancel the common factor.
Step 2.2.5.2
Divide by .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Rewrite as .
Step 2.3.3
Differentiate using the chain rule, which states that is where and .
Step 2.3.3.1
To apply the Chain Rule, set as .
Step 2.3.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3.3
Replace all occurrences of with .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Multiply the exponents in .
Step 2.3.5.1
Apply the power rule and multiply exponents, .
Step 2.3.5.2
Multiply by .
Step 2.3.6
Multiply by .
Step 2.3.7
Multiply by by adding the exponents.
Step 2.3.7.1
Move .
Step 2.3.7.2
Use the power rule to combine exponents.
Step 2.3.7.3
Subtract from .
Step 2.3.8
Multiply by .
Step 2.4
Simplify.
Step 2.4.1
Rewrite the expression using the negative exponent rule .
Step 2.4.2
Combine and .
Step 2.5
Evaluate the derivative at .
Step 2.6
Simplify.
Step 2.6.1
Simplify each term.
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Raise to the power of .
Step 2.6.1.3
Divide by .
Step 2.6.2
Add and .
Step 3
Step 3.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3.2
Simplify the equation and keep it in point-slope form.
Step 3.3
Solve for .
Step 3.3.1
Simplify .
Step 3.3.1.1
Rewrite.
Step 3.3.1.2
Simplify by adding zeros.
Step 3.3.1.3
Apply the distributive property.
Step 3.3.1.4
Multiply by .
Step 3.3.2
Move all terms not containing to the right side of the equation.
Step 3.3.2.1
Add to both sides of the equation.
Step 3.3.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.3.2.3
Combine and .
Step 3.3.2.4
Combine the numerators over the common denominator.
Step 3.3.2.5
Simplify the numerator.
Step 3.3.2.5.1
Multiply by .
Step 3.3.2.5.2
Add and .
Step 4