Calculus Examples

Find the Tangent Line at x=-1 f(x)=(x^7)/7-7/(x^7) at x=-1
at
Step 1
Find the corresponding -value to .
Tap for more steps...
Step 1.1
Substitute in for .
Step 1.2
Simplify .
Tap for more steps...
Step 1.2.1
Simplify each term.
Tap for more steps...
Step 1.2.1.1
Raise to the power of .
Step 1.2.1.2
Move the negative in front of the fraction.
Step 1.2.1.3
Raise to the power of .
Step 1.2.1.4
Divide by .
Step 1.2.1.5
Multiply by .
Step 1.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.3
Combine and .
Step 1.2.4
Combine the numerators over the common denominator.
Step 1.2.5
Simplify the numerator.
Tap for more steps...
Step 1.2.5.1
Multiply by .
Step 1.2.5.2
Add and .
Step 2
Find the first derivative and evaluate at and to find the slope of the tangent line.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Combine and .
Step 2.2.4
Combine and .
Step 2.2.5
Cancel the common factor of .
Tap for more steps...
Step 2.2.5.1
Cancel the common factor.
Step 2.2.5.2
Divide by .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Rewrite as .
Step 2.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.3.1
To apply the Chain Rule, set as .
Step 2.3.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3.3
Replace all occurrences of with .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Multiply the exponents in .
Tap for more steps...
Step 2.3.5.1
Apply the power rule and multiply exponents, .
Step 2.3.5.2
Multiply by .
Step 2.3.6
Multiply by .
Step 2.3.7
Multiply by by adding the exponents.
Tap for more steps...
Step 2.3.7.1
Move .
Step 2.3.7.2
Use the power rule to combine exponents.
Step 2.3.7.3
Subtract from .
Step 2.3.8
Multiply by .
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Rewrite the expression using the negative exponent rule .
Step 2.4.2
Combine and .
Step 2.5
Evaluate the derivative at .
Step 2.6
Simplify.
Tap for more steps...
Step 2.6.1
Simplify each term.
Tap for more steps...
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Raise to the power of .
Step 2.6.1.3
Divide by .
Step 2.6.2
Add and .
Step 3
Plug the slope and point values into the point-slope formula and solve for .
Tap for more steps...
Step 3.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3.2
Simplify the equation and keep it in point-slope form.
Step 3.3
Solve for .
Tap for more steps...
Step 3.3.1
Simplify .
Tap for more steps...
Step 3.3.1.1
Rewrite.
Step 3.3.1.2
Simplify by adding zeros.
Step 3.3.1.3
Apply the distributive property.
Step 3.3.1.4
Multiply by .
Step 3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Add to both sides of the equation.
Step 3.3.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.3.2.3
Combine and .
Step 3.3.2.4
Combine the numerators over the common denominator.
Step 3.3.2.5
Simplify the numerator.
Tap for more steps...
Step 3.3.2.5.1
Multiply by .
Step 3.3.2.5.2
Add and .
Step 4