Calculus Examples

Solve the Differential Equation (dy)/(dx)=x(2x-1)^5
Step 1
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.3.1.1
Let . Find .
Tap for more steps...
Step 2.3.1.1.1
Differentiate .
Step 2.3.1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.1.1.3
Evaluate .
Tap for more steps...
Step 2.3.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.1.1.3.3
Multiply by .
Step 2.3.1.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.3.1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.1.1.4.2
Add and .
Step 2.3.1.2
Rewrite the problem using and .
Step 2.3.2
Combine and .
Step 2.3.3
Simplify.
Tap for more steps...
Step 2.3.3.1
Apply the distributive property.
Step 2.3.3.2
Multiply by .
Step 2.3.3.3
Raise to the power of .
Step 2.3.3.4
Use the power rule to combine exponents.
Step 2.3.3.5
Add and .
Step 2.3.3.6
Multiply by .
Step 2.3.3.7
Multiply by .
Step 2.3.3.8
Multiply by .
Step 2.3.4
Split the single integral into multiple integrals.
Step 2.3.5
Since is constant with respect to , move out of the integral.
Step 2.3.6
By the Power Rule, the integral of with respect to is .
Step 2.3.7
Since is constant with respect to , move out of the integral.
Step 2.3.8
By the Power Rule, the integral of with respect to is .
Step 2.3.9
Simplify.
Tap for more steps...
Step 2.3.9.1
Simplify.
Step 2.3.9.2
Simplify.
Tap for more steps...
Step 2.3.9.2.1
Multiply by .
Step 2.3.9.2.2
Multiply by .
Step 2.3.9.2.3
Multiply by .
Step 2.3.9.2.4
Multiply by .
Step 2.3.10
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .