Enter a problem...
Calculus Examples
Step 1
Rewrite as .
Step 2
Let . Substitute for .
Step 3
Solve for .
Step 4
Use the product rule to find the derivative of with respect to .
Step 5
Substitute for .
Step 6
Step 6.1
Separate the variables.
Step 6.1.1
Solve for .
Step 6.1.1.1
Simplify each term.
Step 6.1.1.1.1
Rewrite as .
Step 6.1.1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.1.1.2
Move all terms not containing to the right side of the equation.
Step 6.1.1.2.1
Subtract from both sides of the equation.
Step 6.1.1.2.2
Combine the opposite terms in .
Step 6.1.1.2.2.1
Subtract from .
Step 6.1.1.2.2.2
Add and .
Step 6.1.1.3
Divide each term in by and simplify.
Step 6.1.1.3.1
Divide each term in by .
Step 6.1.1.3.2
Simplify the left side.
Step 6.1.1.3.2.1
Cancel the common factor of .
Step 6.1.1.3.2.1.1
Cancel the common factor.
Step 6.1.1.3.2.1.2
Divide by .
Step 6.1.2
Multiply both sides by .
Step 6.1.3
Cancel the common factor of .
Step 6.1.3.1
Cancel the common factor.
Step 6.1.3.2
Rewrite the expression.
Step 6.1.4
Rewrite the equation.
Step 6.2
Integrate both sides.
Step 6.2.1
Set up an integral on each side.
Step 6.2.2
Integrate the left side.
Step 6.2.2.1
Complete the square.
Step 6.2.2.1.1
Simplify the expression.
Step 6.2.2.1.1.1
Expand using the FOIL Method.
Step 6.2.2.1.1.1.1
Apply the distributive property.
Step 6.2.2.1.1.1.2
Apply the distributive property.
Step 6.2.2.1.1.1.3
Apply the distributive property.
Step 6.2.2.1.1.2
Simplify and combine like terms.
Step 6.2.2.1.1.2.1
Simplify each term.
Step 6.2.2.1.1.2.1.1
Multiply by .
Step 6.2.2.1.1.2.1.2
Move to the left of .
Step 6.2.2.1.1.2.1.3
Rewrite as .
Step 6.2.2.1.1.2.1.4
Multiply by .
Step 6.2.2.1.1.2.1.5
Multiply by .
Step 6.2.2.1.1.2.2
Add and .
Step 6.2.2.1.1.2.3
Add and .
Step 6.2.2.1.2
Use the form , to find the values of , , and .
Step 6.2.2.1.3
Consider the vertex form of a parabola.
Step 6.2.2.1.4
Find the value of using the formula .
Step 6.2.2.1.4.1
Substitute the values of and into the formula .
Step 6.2.2.1.4.2
Cancel the common factor of and .
Step 6.2.2.1.4.2.1
Factor out of .
Step 6.2.2.1.4.2.2
Cancel the common factors.
Step 6.2.2.1.4.2.2.1
Factor out of .
Step 6.2.2.1.4.2.2.2
Cancel the common factor.
Step 6.2.2.1.4.2.2.3
Rewrite the expression.
Step 6.2.2.1.4.2.2.4
Divide by .
Step 6.2.2.1.5
Find the value of using the formula .
Step 6.2.2.1.5.1
Substitute the values of , and into the formula .
Step 6.2.2.1.5.2
Simplify the right side.
Step 6.2.2.1.5.2.1
Simplify each term.
Step 6.2.2.1.5.2.1.1
Raising to any positive power yields .
Step 6.2.2.1.5.2.1.2
Multiply by .
Step 6.2.2.1.5.2.1.3
Divide by .
Step 6.2.2.1.5.2.1.4
Multiply by .
Step 6.2.2.1.5.2.2
Add and .
Step 6.2.2.1.6
Substitute the values of , , and into the vertex form .
Step 6.2.2.2
Let . Then . Rewrite using and .
Step 6.2.2.2.1
Let . Find .
Step 6.2.2.2.1.1
Differentiate .
Step 6.2.2.2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 6.2.2.2.1.3
Differentiate using the Power Rule which states that is where .
Step 6.2.2.2.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 6.2.2.2.1.5
Add and .
Step 6.2.2.2.2
Rewrite the problem using and .
Step 6.2.2.3
Let , where . Then . Note that since , is positive.
Step 6.2.2.4
Simplify terms.
Step 6.2.2.4.1
Simplify .
Step 6.2.2.4.1.1
Apply pythagorean identity.
Step 6.2.2.4.1.2
Pull terms out from under the radical, assuming positive real numbers.
Step 6.2.2.4.2
Cancel the common factor of .
Step 6.2.2.4.2.1
Factor out of .
Step 6.2.2.4.2.2
Cancel the common factor.
Step 6.2.2.4.2.3
Rewrite the expression.
Step 6.2.2.5
The integral of with respect to is .
Step 6.2.2.6
Substitute back in for each integration substitution variable.
Step 6.2.2.6.1
Replace all occurrences of with .
Step 6.2.2.6.2
Replace all occurrences of with .
Step 6.2.2.7
Simplify.
Step 6.2.2.7.1
Add and .
Step 6.2.2.7.2
Add and .
Step 6.2.3
The integral of with respect to is .
Step 6.2.4
Group the constant of integration on the right side as .
Step 6.3
Solve for .
Step 6.3.1
Move all the terms containing a logarithm to the left side of the equation.
Step 6.3.2
Use the quotient property of logarithms, .
Step 6.3.3
Simplify the numerator.
Step 6.3.3.1
The functions secant and arcsecant are inverses.
Step 6.3.3.2
Draw a triangle in the plane with vertices , , and the origin. Then is the angle between the positive x-axis and the ray beginning at the origin and passing through . Therefore, is .
Step 6.3.3.3
Rewrite as .
Step 6.3.3.4
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.3.4
To solve for , rewrite the equation using properties of logarithms.
Step 6.3.5
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 6.3.6
Solve for .
Step 6.3.6.1
Rewrite the equation as .
Step 6.3.6.2
Multiply both sides by .
Step 6.3.6.3
Simplify the left side.
Step 6.3.6.3.1
Cancel the common factor of .
Step 6.3.6.3.1.1
Cancel the common factor.
Step 6.3.6.3.1.2
Rewrite the expression.
Step 6.3.6.4
Solve for .
Step 6.3.6.4.1
Reorder factors in .
Step 6.3.6.4.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 6.3.6.4.3
Solve for .
Step 6.3.6.4.3.1
Reorder factors in .
Step 6.3.6.4.3.2
Subtract from both sides of the equation.
Step 6.3.6.4.4
To remove the radical on the left side of the equation, square both sides of the equation.
Step 6.3.6.4.5
Simplify each side of the equation.
Step 6.3.6.4.5.1
Use to rewrite as .
Step 6.3.6.4.5.2
Simplify the left side.
Step 6.3.6.4.5.2.1
Simplify .
Step 6.3.6.4.5.2.1.1
Multiply the exponents in .
Step 6.3.6.4.5.2.1.1.1
Apply the power rule and multiply exponents, .
Step 6.3.6.4.5.2.1.1.2
Cancel the common factor of .
Step 6.3.6.4.5.2.1.1.2.1
Cancel the common factor.
Step 6.3.6.4.5.2.1.1.2.2
Rewrite the expression.
Step 6.3.6.4.5.2.1.2
Expand using the FOIL Method.
Step 6.3.6.4.5.2.1.2.1
Apply the distributive property.
Step 6.3.6.4.5.2.1.2.2
Apply the distributive property.
Step 6.3.6.4.5.2.1.2.3
Apply the distributive property.
Step 6.3.6.4.5.2.1.3
Simplify and combine like terms.
Step 6.3.6.4.5.2.1.3.1
Simplify each term.
Step 6.3.6.4.5.2.1.3.1.1
Multiply by .
Step 6.3.6.4.5.2.1.3.1.2
Move to the left of .
Step 6.3.6.4.5.2.1.3.1.3
Rewrite as .
Step 6.3.6.4.5.2.1.3.1.4
Multiply by .
Step 6.3.6.4.5.2.1.3.1.5
Multiply by .
Step 6.3.6.4.5.2.1.3.2
Add and .
Step 6.3.6.4.5.2.1.3.3
Add and .
Step 6.3.6.4.5.2.1.4
Simplify.
Step 6.3.6.4.5.3
Simplify the right side.
Step 6.3.6.4.5.3.1
Simplify .
Step 6.3.6.4.5.3.1.1
Rewrite as .
Step 6.3.6.4.5.3.1.2
Expand using the FOIL Method.
Step 6.3.6.4.5.3.1.2.1
Apply the distributive property.
Step 6.3.6.4.5.3.1.2.2
Apply the distributive property.
Step 6.3.6.4.5.3.1.2.3
Apply the distributive property.
Step 6.3.6.4.5.3.1.3
Simplify and combine like terms.
Step 6.3.6.4.5.3.1.3.1
Simplify each term.
Step 6.3.6.4.5.3.1.3.1.1
Multiply .
Step 6.3.6.4.5.3.1.3.1.1.1
Raise to the power of .
Step 6.3.6.4.5.3.1.3.1.1.2
Raise to the power of .
Step 6.3.6.4.5.3.1.3.1.1.3
Use the power rule to combine exponents.
Step 6.3.6.4.5.3.1.3.1.1.4
Add and .
Step 6.3.6.4.5.3.1.3.1.2
Remove the plus-minus sign on because it is raised to an even power.
Step 6.3.6.4.5.3.1.3.1.3
Apply the product rule to .
Step 6.3.6.4.5.3.1.3.1.4
Multiply the exponents in .
Step 6.3.6.4.5.3.1.3.1.4.1
Apply the power rule and multiply exponents, .
Step 6.3.6.4.5.3.1.3.1.4.2
Move to the left of .
Step 6.3.6.4.5.3.1.3.1.5
Remove the absolute value in because exponentiations with even powers are always positive.
Step 6.3.6.4.5.3.1.3.1.6
Rewrite using the commutative property of multiplication.
Step 6.3.6.4.5.3.1.3.1.7
Rewrite using the commutative property of multiplication.
Step 6.3.6.4.5.3.1.3.1.8
Multiply by by adding the exponents.
Step 6.3.6.4.5.3.1.3.1.8.1
Move .
Step 6.3.6.4.5.3.1.3.1.8.2
Multiply by .
Step 6.3.6.4.5.3.1.3.1.9
Multiply by .
Step 6.3.6.4.5.3.1.3.1.10
Multiply by .
Step 6.3.6.4.5.3.1.3.2
Subtract from .
Step 6.3.6.4.5.3.1.3.2.1
Move .
Step 6.3.6.4.5.3.1.3.2.2
Subtract from .
Step 6.3.6.4.5.3.1.4
Reorder factors in .
Step 6.3.6.4.6
Solve for .
Step 6.3.6.4.6.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 6.3.6.4.6.2
Move all terms containing to the left side of the equation.
Step 6.3.6.4.6.2.1
Subtract from both sides of the equation.
Step 6.3.6.4.6.2.2
Combine the opposite terms in .
Step 6.3.6.4.6.2.2.1
Subtract from .
Step 6.3.6.4.6.2.2.2
Add and .
Step 6.3.6.4.6.3
Subtract from both sides of the equation.
Step 6.3.6.4.6.4
Divide each term in by and simplify.
Step 6.3.6.4.6.4.1
Divide each term in by .
Step 6.3.6.4.6.4.2
Simplify the left side.
Step 6.3.6.4.6.4.2.1
Cancel the common factor of .
Step 6.3.6.4.6.4.2.1.1
Cancel the common factor.
Step 6.3.6.4.6.4.2.1.2
Rewrite the expression.
Step 6.3.6.4.6.4.2.2
Cancel the common factor of .
Step 6.3.6.4.6.4.2.2.1
Cancel the common factor.
Step 6.3.6.4.6.4.2.2.2
Divide by .
Step 6.3.6.4.6.4.3
Simplify the right side.
Step 6.3.6.4.6.4.3.1
Simplify each term.
Step 6.3.6.4.6.4.3.1.1
Dividing two negative values results in a positive value.
Step 6.3.6.4.6.4.3.1.2
Dividing two negative values results in a positive value.
Step 6.4
Group the constant terms together.
Step 6.4.1
Simplify the constant of integration.
Step 6.4.2
Combine constants with the plus or minus.
Step 6.4.3
Combine constants with the plus or minus.
Step 7
Substitute for .
Step 8
Step 8.1
Multiply both sides by .
Step 8.2
Simplify.
Step 8.2.1
Simplify the left side.
Step 8.2.1.1
Cancel the common factor of .
Step 8.2.1.1.1
Cancel the common factor.
Step 8.2.1.1.2
Rewrite the expression.
Step 8.2.2
Simplify the right side.
Step 8.2.2.1
Simplify .
Step 8.2.2.1.1
Cancel the common factor of .
Step 8.2.2.1.1.1
Cancel the common factor.
Step 8.2.2.1.1.2
Rewrite the expression.
Step 8.2.2.1.2
Apply the distributive property.
Step 8.2.2.1.3
Combine and .
Step 8.2.2.1.4
Multiply .
Step 8.2.2.1.4.1
Combine and .
Step 8.2.2.1.4.2
Multiply by by adding the exponents.
Step 8.2.2.1.4.2.1
Multiply by .
Step 8.2.2.1.4.2.1.1
Raise to the power of .
Step 8.2.2.1.4.2.1.2
Use the power rule to combine exponents.
Step 8.2.2.1.4.2.2
Add and .