Calculus Examples

Solve the Differential Equation (dy)/(dx)=(2x-1)/(y^2)
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Apply the constant rule.
Step 2.3.5
Simplify.
Tap for more steps...
Step 2.3.5.1
Combine and .
Step 2.3.5.2
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify .
Tap for more steps...
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1
Apply the distributive property.
Step 3.2.2.1.2
Multiply by .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Factor out of .
Tap for more steps...
Step 3.4.1
Factor out of .
Step 3.4.2
Factor out of .
Step 3.4.3
Factor out of .
Step 3.4.4
Factor out of .