Enter a problem...
Calculus Examples
Step 1
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Let . Then , so . Rewrite using and .
Step 2.3.1.1
Let . Find .
Step 2.3.1.1.1
Differentiate .
Step 2.3.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.1.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.1.1.4
Multiply by .
Step 2.3.1.2
Rewrite the problem using and .
Step 2.3.2
Combine and .
Step 2.3.3
Since is constant with respect to , move out of the integral.
Step 2.3.4
Simplify with factoring out.
Step 2.3.4.1
Factor out of .
Step 2.3.4.2
Rewrite as exponentiation.
Step 2.3.5
Use the half-angle formula to rewrite as .
Step 2.3.6
Let . Then , so . Rewrite using and .
Step 2.3.6.1
Let . Find .
Step 2.3.6.1.1
Differentiate .
Step 2.3.6.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.6.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.6.1.4
Multiply by .
Step 2.3.6.2
Rewrite the problem using and .
Step 2.3.7
Since is constant with respect to , move out of the integral.
Step 2.3.8
Simplify terms.
Step 2.3.8.1
Multiply by .
Step 2.3.8.2
Rewrite as a product.
Step 2.3.8.3
Expand .
Step 2.3.8.3.1
Rewrite the exponentiation as a product.
Step 2.3.8.3.2
Apply the distributive property.
Step 2.3.8.3.3
Apply the distributive property.
Step 2.3.8.3.4
Apply the distributive property.
Step 2.3.8.3.5
Apply the distributive property.
Step 2.3.8.3.6
Apply the distributive property.
Step 2.3.8.3.7
Reorder and .
Step 2.3.8.3.8
Reorder and .
Step 2.3.8.3.9
Move .
Step 2.3.8.3.10
Reorder and .
Step 2.3.8.3.11
Reorder and .
Step 2.3.8.3.12
Move parentheses.
Step 2.3.8.3.13
Move .
Step 2.3.8.3.14
Reorder and .
Step 2.3.8.3.15
Reorder and .
Step 2.3.8.3.16
Move .
Step 2.3.8.3.17
Move .
Step 2.3.8.3.18
Reorder and .
Step 2.3.8.3.19
Reorder and .
Step 2.3.8.3.20
Move parentheses.
Step 2.3.8.3.21
Move .
Step 2.3.8.3.22
Move .
Step 2.3.8.3.23
Multiply by .
Step 2.3.8.3.24
Multiply by .
Step 2.3.8.3.25
Multiply by .
Step 2.3.8.3.26
Multiply by .
Step 2.3.8.3.27
Multiply by .
Step 2.3.8.3.28
Combine and .
Step 2.3.8.3.29
Multiply by .
Step 2.3.8.3.30
Combine and .
Step 2.3.8.3.31
Multiply by .
Step 2.3.8.3.32
Combine and .
Step 2.3.8.3.33
Combine and .
Step 2.3.8.3.34
Multiply by .
Step 2.3.8.3.35
Multiply by .
Step 2.3.8.3.36
Multiply by .
Step 2.3.8.3.37
Combine and .
Step 2.3.8.3.38
Multiply by .
Step 2.3.8.3.39
Multiply by .
Step 2.3.8.3.40
Combine and .
Step 2.3.8.3.41
Raise to the power of .
Step 2.3.8.3.42
Raise to the power of .
Step 2.3.8.3.43
Use the power rule to combine exponents.
Step 2.3.8.3.44
Add and .
Step 2.3.8.3.45
Subtract from .
Step 2.3.8.3.46
Combine and .
Step 2.3.8.3.47
Reorder and .
Step 2.3.8.3.48
Reorder and .
Step 2.3.8.4
Simplify.
Step 2.3.8.4.1
Cancel the common factor of and .
Step 2.3.8.4.1.1
Factor out of .
Step 2.3.8.4.1.2
Cancel the common factors.
Step 2.3.8.4.1.2.1
Factor out of .
Step 2.3.8.4.1.2.2
Cancel the common factor.
Step 2.3.8.4.1.2.3
Rewrite the expression.
Step 2.3.8.4.2
Move the negative in front of the fraction.
Step 2.3.9
Split the single integral into multiple integrals.
Step 2.3.10
Since is constant with respect to , move out of the integral.
Step 2.3.11
Use the half-angle formula to rewrite as .
Step 2.3.12
Since is constant with respect to , move out of the integral.
Step 2.3.13
Simplify.
Step 2.3.13.1
Multiply by .
Step 2.3.13.2
Multiply by .
Step 2.3.14
Split the single integral into multiple integrals.
Step 2.3.15
Apply the constant rule.
Step 2.3.16
Let . Then , so . Rewrite using and .
Step 2.3.16.1
Let . Find .
Step 2.3.16.1.1
Differentiate .
Step 2.3.16.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.16.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.16.1.4
Multiply by .
Step 2.3.16.2
Rewrite the problem using and .
Step 2.3.17
Combine and .
Step 2.3.18
Since is constant with respect to , move out of the integral.
Step 2.3.19
The integral of with respect to is .
Step 2.3.20
Apply the constant rule.
Step 2.3.21
Combine and .
Step 2.3.22
Since is constant with respect to , move out of the integral.
Step 2.3.23
Since is constant with respect to , move out of the integral.
Step 2.3.24
The integral of with respect to is .
Step 2.3.25
Simplify.
Step 2.3.25.1
Simplify.
Step 2.3.25.2
Simplify.
Step 2.3.25.2.1
To write as a fraction with a common denominator, multiply by .
Step 2.3.25.2.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.3.25.2.2.1
Multiply by .
Step 2.3.25.2.2.2
Multiply by .
Step 2.3.25.2.3
Combine the numerators over the common denominator.
Step 2.3.25.2.4
Move to the left of .
Step 2.3.25.2.5
Add and .
Step 2.3.26
Substitute back in for each integration substitution variable.
Step 2.3.26.1
Replace all occurrences of with .
Step 2.3.26.2
Replace all occurrences of with .
Step 2.3.26.3
Replace all occurrences of with .
Step 2.3.26.4
Replace all occurrences of with .
Step 2.3.26.5
Replace all occurrences of with .
Step 2.3.27
Simplify.
Step 2.3.27.1
Simplify each term.
Step 2.3.27.1.1
Cancel the common factor of and .
Step 2.3.27.1.1.1
Factor out of .
Step 2.3.27.1.1.2
Cancel the common factors.
Step 2.3.27.1.1.2.1
Factor out of .
Step 2.3.27.1.1.2.2
Cancel the common factor.
Step 2.3.27.1.1.2.3
Rewrite the expression.
Step 2.3.27.1.2
Multiply by .
Step 2.3.27.2
Apply the distributive property.
Step 2.3.27.3
Simplify.
Step 2.3.27.3.1
Cancel the common factor of .
Step 2.3.27.3.1.1
Factor out of .
Step 2.3.27.3.1.2
Factor out of .
Step 2.3.27.3.1.3
Cancel the common factor.
Step 2.3.27.3.1.4
Rewrite the expression.
Step 2.3.27.3.2
Multiply by .
Step 2.3.27.3.3
Multiply by .
Step 2.3.27.3.4
Multiply .
Step 2.3.27.3.4.1
Multiply by .
Step 2.3.27.3.4.2
Multiply by .
Step 2.3.27.3.5
Multiply .
Step 2.3.27.3.5.1
Multiply by .
Step 2.3.27.3.5.2
Multiply by .
Step 2.3.28
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .