Calculus Examples

Solve the Differential Equation d/(dx)((dy)/(dx))=6x+3
Step 1
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Apply the constant rule.
Step 2.2.2
Simplify the answer.
Tap for more steps...
Step 2.2.2.1
Combine and .
Step 2.2.2.2
Rewrite as .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Apply the constant rule.
Step 2.3.5
Simplify.
Tap for more steps...
Step 2.3.5.1
Combine and .
Step 2.3.5.2
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Simplify .
Tap for more steps...
Step 3.1.1
Combine and .
Step 3.1.2
Combine and .
Step 3.2
Multiply both sides by .
Step 3.3
Simplify.
Tap for more steps...
Step 3.3.1
Simplify the left side.
Tap for more steps...
Step 3.3.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.1.1
Cancel the common factor.
Step 3.3.1.1.2
Rewrite the expression.
Step 3.3.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.1
Simplify .
Tap for more steps...
Step 3.3.2.1.1
Apply the distributive property.
Step 3.3.2.1.2
Reorder.
Tap for more steps...
Step 3.3.2.1.2.1
Move .
Step 3.3.2.1.2.2
Move .
Step 3.3.2.1.2.3
Move .
Step 3.4
Divide each term in by and simplify.
Tap for more steps...
Step 3.4.1
Divide each term in by .
Step 3.4.2
Simplify the left side.
Tap for more steps...
Step 3.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.1
Cancel the common factor.
Step 3.4.2.1.2
Divide by .
Step 4
Simplify the constant of integration.