Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
By the Power Rule, the integral of with respect to is .
Step 2.3.3
Since is constant with respect to , move out of the integral.
Step 2.3.4
By the Power Rule, the integral of with respect to is .
Step 2.3.5
Simplify.
Step 2.3.5.1
Simplify.
Step 2.3.5.2
Simplify.
Step 2.3.5.2.1
Combine and .
Step 2.3.5.2.2
Cancel the common factor of .
Step 2.3.5.2.2.1
Cancel the common factor.
Step 2.3.5.2.2.2
Rewrite the expression.
Step 2.3.5.2.3
Multiply by .
Step 2.3.6
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Combine and .
Step 3.2.2.1.2
Apply the distributive property.
Step 3.2.2.1.3
Combine and .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
Factor out of .
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Factor out of .
Step 3.4.1.4
Factor out of .
Step 3.4.1.5
Factor out of .
Step 3.4.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.3
Simplify terms.
Step 3.4.3.1
Combine and .
Step 3.4.3.2
Combine the numerators over the common denominator.
Step 3.4.4
Simplify the numerator.
Step 3.4.4.1
Factor out of .
Step 3.4.4.1.1
Factor out of .
Step 3.4.4.1.2
Multiply by .
Step 3.4.4.1.3
Factor out of .
Step 3.4.4.2
Move to the left of .
Step 3.4.5
To write as a fraction with a common denominator, multiply by .
Step 3.4.6
Simplify terms.
Step 3.4.6.1
Combine and .
Step 3.4.6.2
Combine the numerators over the common denominator.
Step 3.4.7
Simplify the numerator.
Step 3.4.7.1
Apply the distributive property.
Step 3.4.7.2
Rewrite using the commutative property of multiplication.
Step 3.4.7.3
Multiply by .
Step 3.4.7.4
Multiply by by adding the exponents.
Step 3.4.7.4.1
Move .
Step 3.4.7.4.2
Multiply by .
Step 3.4.7.4.2.1
Raise to the power of .
Step 3.4.7.4.2.2
Use the power rule to combine exponents.
Step 3.4.7.4.3
Add and .
Step 3.4.7.5
Move to the left of .
Step 3.4.8
Combine and .
Step 3.4.9
Rewrite as .
Step 3.4.10
Multiply by .
Step 3.4.11
Combine and simplify the denominator.
Step 3.4.11.1
Multiply by .
Step 3.4.11.2
Raise to the power of .
Step 3.4.11.3
Use the power rule to combine exponents.
Step 3.4.11.4
Add and .
Step 3.4.11.5
Rewrite as .
Step 3.4.11.5.1
Use to rewrite as .
Step 3.4.11.5.2
Apply the power rule and multiply exponents, .
Step 3.4.11.5.3
Combine and .
Step 3.4.11.5.4
Cancel the common factor of .
Step 3.4.11.5.4.1
Cancel the common factor.
Step 3.4.11.5.4.2
Rewrite the expression.
Step 3.4.11.5.5
Evaluate the exponent.
Step 3.4.12
Simplify the numerator.
Step 3.4.12.1
Rewrite as .
Step 3.4.12.2
Raise to the power of .
Step 3.4.13
Simplify the numerator.
Step 3.4.13.1
Combine using the product rule for radicals.
Step 3.4.13.2
Multiply by .
Step 4
Simplify the constant of integration.