Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Step 1.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2
Cancel the common factor of .
Step 1.2.2.1
Factor out of .
Step 1.2.2.2
Factor out of .
Step 1.2.2.3
Cancel the common factor.
Step 1.2.2.4
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
Split the single integral into multiple integrals.
Step 2.3.4
By the Power Rule, the integral of with respect to is .
Step 2.3.5
Apply the constant rule.
Step 2.3.6
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Combine and .
Step 3.2.2.1.1.2
Apply the distributive property.
Step 3.2.2.1.1.3
Multiply .
Step 3.2.2.1.1.3.1
Multiply by .
Step 3.2.2.1.1.3.2
Multiply by .
Step 3.2.2.1.1.4
Multiply .
Step 3.2.2.1.1.4.1
Multiply by .
Step 3.2.2.1.1.4.2
Combine and .
Step 3.2.2.1.1.4.3
Combine and .
Step 3.2.2.1.1.5
Move the negative in front of the fraction.
Step 3.2.2.1.2
Apply the distributive property.
Step 3.2.2.1.3
Simplify.
Step 3.2.2.1.3.1
Multiply .
Step 3.2.2.1.3.1.1
Multiply by .
Step 3.2.2.1.3.1.2
Combine and .
Step 3.2.2.1.3.2
Multiply .
Step 3.2.2.1.3.2.1
Multiply by .
Step 3.2.2.1.3.2.2
Combine and .
Step 3.2.2.1.3.2.3
Multiply by .
Step 3.2.2.1.4
Simplify each term.
Step 3.2.2.1.4.1
Move the negative in front of the fraction.
Step 3.2.2.1.4.2
Move the negative in front of the fraction.
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
To write as a fraction with a common denominator, multiply by .
Step 3.4.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.4.2.1
Multiply by .
Step 3.4.2.2
Multiply by .
Step 3.4.3
Combine the numerators over the common denominator.
Step 3.4.4
Simplify the numerator.
Step 3.4.4.1
Factor out of .
Step 3.4.4.1.1
Factor out of .
Step 3.4.4.1.2
Factor out of .
Step 3.4.4.1.3
Factor out of .
Step 3.4.4.2
Multiply by .
Step 3.4.5
To write as a fraction with a common denominator, multiply by .
Step 3.4.6
Simplify terms.
Step 3.4.6.1
Combine and .
Step 3.4.6.2
Combine the numerators over the common denominator.
Step 3.4.7
Simplify the numerator.
Step 3.4.7.1
Factor out of .
Step 3.4.7.1.1
Factor out of .
Step 3.4.7.1.2
Factor out of .
Step 3.4.7.1.3
Factor out of .
Step 3.4.7.2
Apply the distributive property.
Step 3.4.7.3
Rewrite using the commutative property of multiplication.
Step 3.4.7.4
Move to the left of .
Step 3.4.7.5
Multiply by by adding the exponents.
Step 3.4.7.5.1
Move .
Step 3.4.7.5.2
Multiply by .
Step 3.4.7.6
Move to the left of .
Step 3.4.8
Rewrite as .
Step 3.4.9
Multiply by .
Step 3.4.10
Combine and simplify the denominator.
Step 3.4.10.1
Multiply by .
Step 3.4.10.2
Raise to the power of .
Step 3.4.10.3
Use the power rule to combine exponents.
Step 3.4.10.4
Add and .
Step 3.4.10.5
Rewrite as .
Step 3.4.10.5.1
Use to rewrite as .
Step 3.4.10.5.2
Apply the power rule and multiply exponents, .
Step 3.4.10.5.3
Combine and .
Step 3.4.10.5.4
Cancel the common factor of .
Step 3.4.10.5.4.1
Cancel the common factor.
Step 3.4.10.5.4.2
Rewrite the expression.
Step 3.4.10.5.5
Evaluate the exponent.
Step 3.4.11
Simplify the numerator.
Step 3.4.11.1
Rewrite as .
Step 3.4.11.2
Raise to the power of .
Step 3.4.12
Simplify the numerator.
Step 3.4.12.1
Combine using the product rule for radicals.
Step 3.4.12.2
Multiply by .
Step 4
Simplify the constant of integration.