Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
Differentiate using the Quotient Rule which states that is where and .
Step 2.2
Differentiate.
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Rewrite as .
Step 2.4
By the Sum Rule, the derivative of with respect to is .
Step 2.5
Differentiate using the Power Rule which states that is where .
Step 2.6
Since is constant with respect to , the derivative of with respect to is .
Step 2.7
Rewrite as .
Step 2.8
Simplify.
Step 2.8.1
Apply the distributive property.
Step 2.8.2
Simplify the numerator.
Step 2.8.2.1
Simplify each term.
Step 2.8.2.1.1
Expand using the FOIL Method.
Step 2.8.2.1.1.1
Apply the distributive property.
Step 2.8.2.1.1.2
Apply the distributive property.
Step 2.8.2.1.1.3
Apply the distributive property.
Step 2.8.2.1.2
Simplify each term.
Step 2.8.2.1.2.1
Multiply by .
Step 2.8.2.1.2.2
Multiply by .
Step 2.8.2.1.3
Expand using the FOIL Method.
Step 2.8.2.1.3.1
Apply the distributive property.
Step 2.8.2.1.3.2
Apply the distributive property.
Step 2.8.2.1.3.3
Apply the distributive property.
Step 2.8.2.1.4
Simplify each term.
Step 2.8.2.1.4.1
Multiply by .
Step 2.8.2.1.4.2
Multiply .
Step 2.8.2.1.4.2.1
Multiply by .
Step 2.8.2.1.4.2.2
Multiply by .
Step 2.8.2.1.4.3
Multiply by .
Step 2.8.2.1.4.4
Multiply .
Step 2.8.2.1.4.4.1
Multiply by .
Step 2.8.2.1.4.4.2
Multiply by .
Step 2.8.2.2
Combine the opposite terms in .
Step 2.8.2.2.1
Subtract from .
Step 2.8.2.2.2
Add and .
Step 2.8.2.2.3
Add and .
Step 2.8.2.2.4
Add and .
Step 2.8.2.3
Add and .
Step 2.8.2.4
Subtract from .
Step 2.8.3
Factor out of .
Step 2.8.3.1
Factor out of .
Step 2.8.3.2
Factor out of .
Step 2.8.3.3
Factor out of .
Step 3
Step 3.1
Differentiate.
Step 3.1.1
By the Sum Rule, the derivative of with respect to is .
Step 3.1.2
Differentiate using the Power Rule which states that is where .
Step 3.2
Evaluate .
Step 3.2.1
Differentiate using the chain rule, which states that is where and .
Step 3.2.1.1
To apply the Chain Rule, set as .
Step 3.2.1.2
Differentiate using the Power Rule which states that is where .
Step 3.2.1.3
Replace all occurrences of with .
Step 3.2.2
Rewrite as .
Step 3.3
Reorder terms.
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Multiply both sides by .
Step 5.2
Simplify.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Simplify .
Step 5.2.1.1.1
Cancel the common factor of .
Step 5.2.1.1.1.1
Cancel the common factor.
Step 5.2.1.1.1.2
Rewrite the expression.
Step 5.2.1.1.2
Apply the distributive property.
Step 5.2.1.1.3
Simplify the expression.
Step 5.2.1.1.3.1
Multiply by .
Step 5.2.1.1.3.2
Move .
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Simplify .
Step 5.2.2.1.1
Apply the distributive property.
Step 5.2.2.1.2
Move .
Step 5.3
Solve for .
Step 5.3.1
Simplify each term.
Step 5.3.1.1
Rewrite as .
Step 5.3.1.2
Expand using the FOIL Method.
Step 5.3.1.2.1
Apply the distributive property.
Step 5.3.1.2.2
Apply the distributive property.
Step 5.3.1.2.3
Apply the distributive property.
Step 5.3.1.3
Simplify and combine like terms.
Step 5.3.1.3.1
Simplify each term.
Step 5.3.1.3.1.1
Multiply by .
Step 5.3.1.3.1.2
Rewrite using the commutative property of multiplication.
Step 5.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 5.3.1.3.1.4
Multiply by by adding the exponents.
Step 5.3.1.3.1.4.1
Move .
Step 5.3.1.3.1.4.2
Multiply by .
Step 5.3.1.3.1.5
Multiply by .
Step 5.3.1.3.1.6
Multiply by .
Step 5.3.1.3.2
Subtract from .
Step 5.3.1.3.2.1
Move .
Step 5.3.1.3.2.2
Subtract from .
Step 5.3.1.4
Apply the distributive property.
Step 5.3.1.5
Simplify.
Step 5.3.1.5.1
Multiply by by adding the exponents.
Step 5.3.1.5.1.1
Move .
Step 5.3.1.5.1.2
Multiply by .
Step 5.3.1.5.2
Multiply by by adding the exponents.
Step 5.3.1.5.2.1
Move .
Step 5.3.1.5.2.2
Multiply by .
Step 5.3.1.5.2.2.1
Raise to the power of .
Step 5.3.1.5.2.2.2
Use the power rule to combine exponents.
Step 5.3.1.5.2.3
Add and .
Step 5.3.1.6
Multiply by .
Step 5.3.1.7
Rewrite as .
Step 5.3.1.8
Expand using the FOIL Method.
Step 5.3.1.8.1
Apply the distributive property.
Step 5.3.1.8.2
Apply the distributive property.
Step 5.3.1.8.3
Apply the distributive property.
Step 5.3.1.9
Simplify and combine like terms.
Step 5.3.1.9.1
Simplify each term.
Step 5.3.1.9.1.1
Multiply by .
Step 5.3.1.9.1.2
Rewrite using the commutative property of multiplication.
Step 5.3.1.9.1.3
Rewrite using the commutative property of multiplication.
Step 5.3.1.9.1.4
Multiply by by adding the exponents.
Step 5.3.1.9.1.4.1
Move .
Step 5.3.1.9.1.4.2
Multiply by .
Step 5.3.1.9.1.5
Multiply by .
Step 5.3.1.9.1.6
Multiply by .
Step 5.3.1.9.2
Subtract from .
Step 5.3.1.9.2.1
Move .
Step 5.3.1.9.2.2
Subtract from .
Step 5.3.1.10
Apply the distributive property.
Step 5.3.1.11
Simplify.
Step 5.3.1.11.1
Multiply by by adding the exponents.
Step 5.3.1.11.1.1
Move .
Step 5.3.1.11.1.2
Multiply by .
Step 5.3.1.11.1.2.1
Raise to the power of .
Step 5.3.1.11.1.2.2
Use the power rule to combine exponents.
Step 5.3.1.11.1.3
Add and .
Step 5.3.1.11.2
Multiply by by adding the exponents.
Step 5.3.1.11.2.1
Move .
Step 5.3.1.11.2.2
Multiply by .
Step 5.3.1.12
Simplify each term.
Step 5.3.1.12.1
Rewrite using the commutative property of multiplication.
Step 5.3.1.12.2
Multiply by .
Step 5.3.2
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 5.3.3
Subtract from both sides of the equation.
Step 5.3.4
Move all terms not containing to the right side of the equation.
Step 5.3.4.1
Subtract from both sides of the equation.
Step 5.3.4.2
Add to both sides of the equation.
Step 5.3.4.3
Subtract from both sides of the equation.
Step 5.3.5
Factor out of .
Step 5.3.5.1
Factor out of .
Step 5.3.5.2
Factor out of .
Step 5.3.5.3
Factor out of .
Step 5.3.5.4
Factor out of .
Step 5.3.5.5
Factor out of .
Step 5.3.5.6
Factor out of .
Step 5.3.5.7
Factor out of .
Step 5.3.6
Rewrite as .
Step 5.3.7
Divide each term in by and simplify.
Step 5.3.7.1
Divide each term in by .
Step 5.3.7.2
Simplify the left side.
Step 5.3.7.2.1
Cancel the common factor of .
Step 5.3.7.2.1.1
Cancel the common factor.
Step 5.3.7.2.1.2
Rewrite the expression.
Step 5.3.7.2.2
Cancel the common factor of .
Step 5.3.7.2.2.1
Cancel the common factor.
Step 5.3.7.2.2.2
Divide by .
Step 5.3.7.3
Simplify the right side.
Step 5.3.7.3.1
Simplify each term.
Step 5.3.7.3.1.1
Cancel the common factor of and .
Step 5.3.7.3.1.1.1
Factor out of .
Step 5.3.7.3.1.1.2
Cancel the common factors.
Step 5.3.7.3.1.1.2.1
Cancel the common factor.
Step 5.3.7.3.1.1.2.2
Rewrite the expression.
Step 5.3.7.3.1.2
Move the negative in front of the fraction.
Step 5.3.7.3.1.3
Cancel the common factor of and .
Step 5.3.7.3.1.3.1
Factor out of .
Step 5.3.7.3.1.3.2
Cancel the common factors.
Step 5.3.7.3.1.3.2.1
Cancel the common factor.
Step 5.3.7.3.1.3.2.2
Rewrite the expression.
Step 5.3.7.3.1.4
Move the negative in front of the fraction.
Step 5.3.7.3.1.5
Cancel the common factor of and .
Step 5.3.7.3.1.5.1
Factor out of .
Step 5.3.7.3.1.5.2
Cancel the common factors.
Step 5.3.7.3.1.5.2.1
Cancel the common factor.
Step 5.3.7.3.1.5.2.2
Rewrite the expression.
Step 5.3.7.3.1.6
Cancel the common factor of and .
Step 5.3.7.3.1.6.1
Factor out of .
Step 5.3.7.3.1.6.2
Cancel the common factors.
Step 5.3.7.3.1.6.2.1
Cancel the common factor.
Step 5.3.7.3.1.6.2.2
Rewrite the expression.
Step 5.3.7.3.1.7
Move the negative in front of the fraction.
Step 5.3.7.3.2
Simplify terms.
Step 5.3.7.3.2.1
Combine the numerators over the common denominator.
Step 5.3.7.3.2.2
Combine the numerators over the common denominator.
Step 5.3.7.3.2.3
Combine the numerators over the common denominator.
Step 5.3.7.3.2.4
Factor out of .
Step 5.3.7.3.2.5
Factor out of .
Step 5.3.7.3.2.6
Factor out of .
Step 5.3.7.3.2.7
Factor out of .
Step 5.3.7.3.2.8
Factor out of .
Step 5.3.7.3.2.9
Factor out of .
Step 5.3.7.3.2.10
Factor out of .
Step 5.3.7.3.2.11
Simplify the expression.
Step 5.3.7.3.2.11.1
Rewrite as .
Step 5.3.7.3.2.11.2
Move the negative in front of the fraction.
Step 6
Replace with .