Calculus Examples

Evaluate the Limit limit as x approaches pi/4 of (2cos(x)^2-1)/(cos(x)-sin(x))
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Evaluate the limit.
Tap for more steps...
Step 1.1.2.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.2.1.2
Move the term outside of the limit because it is constant with respect to .
Step 1.1.2.1.3
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.1.2.1.4
Move the limit inside the trig function because cosine is continuous.
Step 1.1.2.1.5
Evaluate the limit of which is constant as approaches .
Step 1.1.2.2
Evaluate the limit of by plugging in for .
Step 1.1.2.3
Simplify the answer.
Tap for more steps...
Step 1.1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.1.2.3.1.1
The exact value of is .
Step 1.1.2.3.1.2
Apply the product rule to .
Step 1.1.2.3.1.3
Cancel the common factor of .
Tap for more steps...
Step 1.1.2.3.1.3.1
Factor out of .
Step 1.1.2.3.1.3.2
Cancel the common factor.
Step 1.1.2.3.1.3.3
Rewrite the expression.
Step 1.1.2.3.1.4
Rewrite as .
Tap for more steps...
Step 1.1.2.3.1.4.1
Use to rewrite as .
Step 1.1.2.3.1.4.2
Apply the power rule and multiply exponents, .
Step 1.1.2.3.1.4.3
Combine and .
Step 1.1.2.3.1.4.4
Cancel the common factor of .
Tap for more steps...
Step 1.1.2.3.1.4.4.1
Cancel the common factor.
Step 1.1.2.3.1.4.4.2
Rewrite the expression.
Step 1.1.2.3.1.4.5
Evaluate the exponent.
Step 1.1.2.3.1.5
Divide by .
Step 1.1.2.3.1.6
Multiply by .
Step 1.1.2.3.2
Subtract from .
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.3.2
Move the limit inside the trig function because cosine is continuous.
Step 1.1.3.3
Move the limit inside the trig function because sine is continuous.
Step 1.1.3.4
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 1.1.3.4.1
Evaluate the limit of by plugging in for .
Step 1.1.3.4.2
Evaluate the limit of by plugging in for .
Step 1.1.3.5
Simplify the answer.
Tap for more steps...
Step 1.1.3.5.1
Simplify each term.
Tap for more steps...
Step 1.1.3.5.1.1
The exact value of is .
Step 1.1.3.5.1.2
The exact value of is .
Step 1.1.3.5.2
Combine the numerators over the common denominator.
Step 1.1.3.5.3
Subtract from .
Step 1.1.3.5.4
Divide by .
Step 1.1.3.5.5
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.3.6
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
Step 1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3
Evaluate .
Tap for more steps...
Step 1.3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.3.2.1
To apply the Chain Rule, set as .
Step 1.3.3.2.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3.2.3
Replace all occurrences of with .
Step 1.3.3.3
The derivative of with respect to is .
Step 1.3.3.4
Multiply by .
Step 1.3.3.5
Multiply by .
Step 1.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.5
Add and .
Step 1.3.6
By the Sum Rule, the derivative of with respect to is .
Step 1.3.7
The derivative of with respect to is .
Step 1.3.8
Evaluate .
Tap for more steps...
Step 1.3.8.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.8.2
The derivative of with respect to is .
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Move the term outside of the limit because it is constant with respect to .
Step 2.2
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 2.3
Split the limit using the Product of Limits Rule on the limit as approaches .
Step 2.4
Move the limit inside the trig function because cosine is continuous.
Step 2.5
Move the limit inside the trig function because sine is continuous.
Step 2.6
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.7
Move the limit inside the trig function because sine is continuous.
Step 2.8
Move the limit inside the trig function because cosine is continuous.
Step 3
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 3.1
Evaluate the limit of by plugging in for .
Step 3.2
Evaluate the limit of by plugging in for .
Step 3.3
Evaluate the limit of by plugging in for .
Step 3.4
Evaluate the limit of by plugging in for .
Step 4
Simplify the answer.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
The exact value of is .
Step 4.1.2
The exact value of is .
Step 4.2
Simplify the denominator.
Tap for more steps...
Step 4.2.1
Factor out of .
Step 4.2.2
The exact value of is .
Step 4.2.3
The exact value of is .
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
Rewrite in a factored form.
Tap for more steps...
Step 4.2.5.1
Add and .
Step 4.2.5.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.2.5.2.1
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.2.5.2.1.1
Cancel the common factor.
Step 4.2.5.2.1.2
Rewrite the expression.
Step 4.2.5.2.2
Divide by .
Step 4.3
Multiply by .
Step 4.4
Simplify the numerator.
Tap for more steps...
Step 4.4.1
Raise to the power of .
Step 4.4.2
Raise to the power of .
Step 4.4.3
Use the power rule to combine exponents.
Step 4.4.4
Add and .
Step 4.5
Multiply by .
Step 4.6
Rewrite as .
Tap for more steps...
Step 4.6.1
Use to rewrite as .
Step 4.6.2
Apply the power rule and multiply exponents, .
Step 4.6.3
Combine and .
Step 4.6.4
Cancel the common factor of .
Tap for more steps...
Step 4.6.4.1
Cancel the common factor.
Step 4.6.4.2
Rewrite the expression.
Step 4.6.5
Evaluate the exponent.
Step 4.7
Cancel the common factor of and .
Tap for more steps...
Step 4.7.1
Factor out of .
Step 4.7.2
Cancel the common factors.
Tap for more steps...
Step 4.7.2.1
Factor out of .
Step 4.7.2.2
Cancel the common factor.
Step 4.7.2.3
Rewrite the expression.
Step 4.8
Multiply the numerator by the reciprocal of the denominator.
Step 4.9
Cancel the common factor of and .
Tap for more steps...
Step 4.9.1
Rewrite as .
Step 4.9.2
Move the negative in front of the fraction.
Step 4.10
Multiply by .
Step 4.11
Combine and simplify the denominator.
Tap for more steps...
Step 4.11.1
Multiply by .
Step 4.11.2
Raise to the power of .
Step 4.11.3
Raise to the power of .
Step 4.11.4
Use the power rule to combine exponents.
Step 4.11.5
Add and .
Step 4.11.6
Rewrite as .
Tap for more steps...
Step 4.11.6.1
Use to rewrite as .
Step 4.11.6.2
Apply the power rule and multiply exponents, .
Step 4.11.6.3
Combine and .
Step 4.11.6.4
Cancel the common factor of .
Tap for more steps...
Step 4.11.6.4.1
Cancel the common factor.
Step 4.11.6.4.2
Rewrite the expression.
Step 4.11.6.5
Evaluate the exponent.
Step 4.12
Multiply .
Tap for more steps...
Step 4.12.1
Multiply by .
Step 4.12.2
Multiply by .
Step 4.13
Cancel the common factor of .
Tap for more steps...
Step 4.13.1
Move the leading negative in into the numerator.
Step 4.13.2
Factor out of .
Step 4.13.3
Cancel the common factor.
Step 4.13.4
Rewrite the expression.
Step 4.14
Multiply by .
Step 4.15
Multiply by .
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: