Calculus Examples

Evaluate the Limit limit as x approaches infinity of (2^x-5)/(2^x+7)
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.2.2
Since the exponent approaches , the quantity approaches .
Step 1.1.2.3
Evaluate the limit.
Tap for more steps...
Step 1.1.2.3.1
Evaluate the limit of which is constant as approaches .
Step 1.1.2.3.2
Simplify the answer.
Tap for more steps...
Step 1.1.2.3.2.1
Multiply by .
Step 1.1.2.3.2.2
Infinity plus or minus a number is infinity.
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.3.2
Since the exponent approaches , the quantity approaches .
Step 1.1.3.3
Evaluate the limit of which is constant as approaches .
Step 1.1.3.4
Infinity plus or minus a number is infinity.
Step 1.1.3.5
Infinity divided by infinity is undefined.
Undefined
Step 1.1.4
Infinity divided by infinity is undefined.
Undefined
Step 1.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
Step 1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3
Differentiate using the Exponential Rule which states that is where =.
Step 1.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.5
Add and .
Step 1.3.6
By the Sum Rule, the derivative of with respect to is .
Step 1.3.7
Differentiate using the Exponential Rule which states that is where =.
Step 1.3.8
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.9
Add and .
Step 1.4
Reduce.
Tap for more steps...
Step 1.4.1
Cancel the common factor of .
Tap for more steps...
Step 1.4.1.1
Cancel the common factor.
Step 1.4.1.2
Rewrite the expression.
Step 1.4.2
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.1
Cancel the common factor.
Step 1.4.2.2
Rewrite the expression.
Step 2
Evaluate the limit of which is constant as approaches .