Enter a problem...
Calculus Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply by by adding the exponents.
Step 1.3.1.1.1
Use the power rule to combine exponents.
Step 1.3.1.1.2
Add and .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Multiply by .
Step 1.3.2
Subtract from .
Step 2
Split the single integral into multiple integrals.
Step 3
Step 3.1
Let . Find .
Step 3.1.1
Differentiate .
Step 3.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.3
Differentiate using the Power Rule which states that is where .
Step 3.1.4
Multiply by .
Step 3.2
Rewrite the problem using and .
Step 4
Combine and .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
The integral of with respect to is .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Step 8.1
Let . Find .
Step 8.1.1
Differentiate .
Step 8.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 8.1.3
Differentiate using the Power Rule which states that is where .
Step 8.1.4
Multiply by .
Step 8.2
Rewrite the problem using and .
Step 9
Combine and .
Step 10
Since is constant with respect to , move out of the integral.
Step 11
Step 11.1
Combine and .
Step 11.2
Move the negative in front of the fraction.
Step 12
The integral of with respect to is .
Step 13
Apply the constant rule.
Step 14
Simplify.
Step 15
Step 15.1
Replace all occurrences of with .
Step 15.2
Replace all occurrences of with .