Calculus Examples

Evaluate the Integral integral of (e^(3x)-2)^2 with respect to x
Step 1
Simplify.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.3.1.1.1
Use the power rule to combine exponents.
Step 1.3.1.1.2
Add and .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Multiply by .
Step 1.3.2
Subtract from .
Step 2
Split the single integral into multiple integrals.
Step 3
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 3.1
Let . Find .
Tap for more steps...
Step 3.1.1
Differentiate .
Step 3.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.3
Differentiate using the Power Rule which states that is where .
Step 3.1.4
Multiply by .
Step 3.2
Rewrite the problem using and .
Step 4
Combine and .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
The integral of with respect to is .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 8.1
Let . Find .
Tap for more steps...
Step 8.1.1
Differentiate .
Step 8.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 8.1.3
Differentiate using the Power Rule which states that is where .
Step 8.1.4
Multiply by .
Step 8.2
Rewrite the problem using and .
Step 9
Combine and .
Step 10
Since is constant with respect to , move out of the integral.
Step 11
Simplify.
Tap for more steps...
Step 11.1
Combine and .
Step 11.2
Move the negative in front of the fraction.
Step 12
The integral of with respect to is .
Step 13
Apply the constant rule.
Step 14
Simplify.
Step 15
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 15.1
Replace all occurrences of with .
Step 15.2
Replace all occurrences of with .