Enter a problem...
Calculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Differentiate using the Constant Rule.
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.4
Combine terms.
Step 1.4.1
Add and .
Step 1.4.2
Add and .
Step 2
Since is constant with respect to , the derivative of with respect to is .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2
Evaluate .
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Multiply by .
Step 4.1.3
Differentiate using the Constant Rule.
Step 4.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.4
Combine terms.
Step 4.1.4.1
Add and .
Step 4.1.4.2
Add and .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.3
Simplify .
Step 5.3.1
Rewrite as .
Step 5.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 5.3.3
Plus or minus is .
Step 6
Critical points to evaluate.
Step 7
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 8
Since the first derivative test failed, there are no local extrema.
No Local Extrema
Step 9