Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3
Differentiate using the Power Rule which states that is where .
Step 1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5
Add and .
Step 1.2
Rewrite the problem using and .
Step 2
Step 2.1
Apply the distributive property.
Step 2.2
Raise to the power of .
Step 2.3
Use the power rule to combine exponents.
Step 2.4
Add and .
Step 3
Split the single integral into multiple integrals.
Step 4
By the Power Rule, the integral of with respect to is .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
By the Power Rule, the integral of with respect to is .
Step 7
Step 7.1
Simplify.
Step 7.2
Simplify.
Step 7.2.1
Combine and .
Step 7.2.2
Move the negative in front of the fraction.
Step 8
Replace all occurrences of with .