Calculus Examples

Find the Derivative - d/dx (x+1)^x
Step 1
Use the properties of logarithms to simplify the differentiation.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Expand by moving outside the logarithm.
Step 2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3
Replace all occurrences of with .
Step 3
Differentiate using the Product Rule which states that is where and .
Step 4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.1
To apply the Chain Rule, set as .
Step 4.2
The derivative of with respect to is .
Step 4.3
Replace all occurrences of with .
Step 5
Differentiate.
Tap for more steps...
Step 5.1
Combine and .
Step 5.2
By the Sum Rule, the derivative of with respect to is .
Step 5.3
Differentiate using the Power Rule which states that is where .
Step 5.4
Since is constant with respect to , the derivative of with respect to is .
Step 5.5
Simplify the expression.
Tap for more steps...
Step 5.5.1
Add and .
Step 5.5.2
Multiply by .
Step 5.6
Differentiate using the Power Rule which states that is where .
Step 5.7
Multiply by .
Step 6
To write as a fraction with a common denominator, multiply by .
Step 7
Combine the numerators over the common denominator.
Step 8
Combine and .
Step 9
Simplify.
Tap for more steps...
Step 9.1
Simplify the numerator.
Tap for more steps...
Step 9.1.1
Simplify each term.
Tap for more steps...
Step 9.1.1.1
Apply the distributive property.
Step 9.1.1.2
Multiply by .
Step 9.1.2
Apply the distributive property.
Step 9.1.3
Reorder factors in .
Step 9.2
Reorder terms.