Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4
Differentiate using the Power Rule which states that is where .
Step 1.1.5
Add and .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
Add and .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
The values found for and will be used to evaluate the definite integral.
Step 1.6
Rewrite the problem using , , and the new limits of integration.
Step 2
Step 2.1
Move out of the denominator by raising it to the power.
Step 2.2
Multiply the exponents in .
Step 2.2.1
Apply the power rule and multiply exponents, .
Step 2.2.2
Multiply by .
Step 3
By the Power Rule, the integral of with respect to is .
Step 4
Step 4.1
Evaluate at and at .
Step 4.2
One to any power is one.
Step 5
Step 5.1
Rewrite the expression using the negative exponent rule .
Step 5.2
Write as a fraction with a common denominator.
Step 5.3
Combine the numerators over the common denominator.
Step 5.4
Simplify the numerator.
Step 5.4.1
Add and .
Step 5.4.2
Add and .