Enter a problem...
Calculus Examples
Step 1
Step 1.1
Cancel the common factor of and .
Step 1.1.1
Factor out of .
Step 1.1.2
Cancel the common factors.
Step 1.1.2.1
Factor out of .
Step 1.1.2.2
Cancel the common factor.
Step 1.1.2.3
Rewrite the expression.
Step 1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.4
Differentiate using the Power Rule which states that is where .
Step 1.5
Multiply by .
Step 1.6
Simplify.
Step 1.6.1
Apply the distributive property.
Step 1.6.2
Combine terms.
Step 1.6.2.1
Combine and .
Step 1.6.2.2
Combine and .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Add and .