문제를 입력하십시오...
미적분 예제
Step 1
을 함수로 씁니다.
Step 2
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
미분합니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
의 왼쪽으로 이동하기
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
식을 간단히 합니다.
를 에 더합니다.
에 을 곱합니다.
를 승 합니다.
지수 법칙 을 이용하여 지수를 합칩니다.
를 에 더합니다.
간단히 합니다.
분배 법칙을 적용합니다.
분배 법칙을 적용합니다.
분자를 간단히 합니다.
각 항을 간단히 합니다.
지수를 더하여 에 을 곱합니다.
를 옮깁니다.
에 을 곱합니다.
를 승 합니다.
지수 법칙 을 이용하여 지수를 합칩니다.
를 에 더합니다.
에 을 곱합니다.
의 반대 항을 묶습니다.
에서 을 뺍니다.
를 에 더합니다.
Step 3
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
멱의 법칙을 이용하여 미분합니다.
의 지수를 곱합니다.
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
에 을 곱합니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
에 을 곱합니다.
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
를 모두 로 바꿉니다.
인수분해하여 식을 간단히 합니다.
에 을 곱합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
공약수로 약분합니다.
에서 를 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
식을 간단히 합니다.
를 에 더합니다.
에 을 곱합니다.
를 승 합니다.
를 승 합니다.
지수 법칙 을 이용하여 지수를 합칩니다.
를 에 더합니다.
에서 을 뺍니다.
와 을 묶습니다.
간단히 합니다.
분배 법칙을 적용합니다.
각 항을 간단히 합니다.
에 을 곱합니다.
에 을 곱합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
을 로 바꿔 씁니다.
에서 를 인수분해합니다.
을 로 바꿔 씁니다.
마이너스 부호를 분수 앞으로 보냅니다.
Step 4
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
Step 5
1차 도함수를 구합니다.
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
미분합니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
의 왼쪽으로 이동하기
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
식을 간단히 합니다.
를 에 더합니다.
에 을 곱합니다.
를 승 합니다.
지수 법칙 을 이용하여 지수를 합칩니다.
를 에 더합니다.
간단히 합니다.
분배 법칙을 적용합니다.
분배 법칙을 적용합니다.
분자를 간단히 합니다.
각 항을 간단히 합니다.
지수를 더하여 에 을 곱합니다.
를 옮깁니다.
에 을 곱합니다.
를 승 합니다.
지수 법칙 을 이용하여 지수를 합칩니다.
를 에 더합니다.
에 을 곱합니다.
의 반대 항을 묶습니다.
에서 을 뺍니다.
를 에 더합니다.
의 에 대한 1차 도함수는 입니다.
Step 6
1차 도함수가 이 되게 합니다.
분자가 0과 같게 만듭니다.
의 각 항을 로 나누고 식을 간단히 합니다.
의 각 항을 로 나눕니다.
좌변을 간단히 합니다.
의 공약수로 약분합니다.
공약수로 약분합니다.
을 로 나눕니다.
우변을 간단히 합니다.
을 로 나눕니다.
Step 7
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
Step 8
계산할 임계점.
Step 9
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
Step 10
분자를 간단히 합니다.
을 여러 번 거듭제곱해도 이 나옵니다.
에서 을 뺍니다.
분모를 간단히 합니다.
을 여러 번 거듭제곱해도 이 나옵니다.
를 에 더합니다.
를 승 합니다.
공약수를 소거하여 수식을 간단히 정리합니다.
에 을 곱합니다.
및 의 공약수로 약분합니다.
에서 를 인수분해합니다.
공약수로 약분합니다.
에서 를 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
마이너스 부호를 분수 앞으로 보냅니다.
을 곱합니다.
에 을 곱합니다.
에 을 곱합니다.
Step 11
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
Step 12
수식에서 변수 에 을 대입합니다.
결과를 간단히 합니다.
을 여러 번 거듭제곱해도 이 나옵니다.
분모를 간단히 합니다.
을 여러 번 거듭제곱해도 이 나옵니다.
를 에 더합니다.
을 로 나눕니다.
최종 답은 입니다.
Step 13
에 대한 극값입니다.
은 극솟값임
Step 14