問題を入力...
微分積分 例
Step 1
を関数で書きます。
Step 2
微分します。
総和則では、のに関する積分はです。
のとき、はであるというべき乗則を使って微分します。
の値を求めます。
はに対して定数なので、に対するの微分係数はです。
のとき、はであるというべき乗則を使って微分します。
にをかけます。
定数の規則を使って微分します。
はについて定数なので、についての微分係数はです。
とをたし算します。
Step 3
総和則では、のに関する積分はです。
の値を求めます。
はに対して定数なので、に対するの微分係数はです。
のとき、はであるというべき乗則を使って微分します。
にをかけます。
定数の規則を使って微分します。
はについて定数なので、についての微分係数はです。
とをたし算します。
Step 4
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
Step 5
一次導関数を求めます。
微分します。
総和則では、のに関する積分はです。
のとき、はであるというべき乗則を使って微分します。
の値を求めます。
はに対して定数なので、に対するの微分係数はです。
のとき、はであるというべき乗則を使って微分します。
にをかけます。
定数の規則を使って微分します。
はについて定数なので、についての微分係数はです。
とをたし算します。
に関するの一次導関数はです。
Step 6
一次導関数をに等しくします。
方程式の両辺にを足します。
の各項をで割り、簡約します。
の各項をで割ります。
左辺を簡約します。
の共通因数を約分します。
共通因数を約分します。
をで割ります。
右辺を簡約します。
をで割ります。
Step 7
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
Step 8
値を求める臨界点です。
Step 9
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
Step 10
は二次導関数の値が正であるため、極小値です。これは二次導関数テストと呼ばれます。
は極小値です
Step 11
式の変数をで置換えます。
結果を簡約します。
各項を簡約します。
1のすべての数の累乗は1です。
にをかけます。
数を引いて簡約します。
からを引きます。
からを引きます。
最終的な答えはです。
Step 12
の極値です。
は極小値です
Step 13